609 research outputs found

    First Assessment of Mountains on Northwestern Ellesmere Island, Nunavut, as Potential Astronomical Observing Sites

    Full text link
    Ellesmere Island, at the most northerly tip of Canada, possesses the highest mountain peaks within 10 degrees of the pole. The highest is 2616 m, with many summits over 1000 m, high enough to place them above a stable low-elevation thermal inversion that persists through winter darkness. Our group has studied four mountains along the northwestern coast which have the additional benefit of smooth onshore airflow from the ice-locked Arctic Ocean. We deployed small robotic site testing stations at three sites, the highest of which is over 1600 m and within 8 degrees of the pole. Basic weather and sky clarity data for over three years beginning in 2006 are presented here, and compared with available nearby sea-level data and one manned mid-elevation site. Our results point to coastal mountain sites experiencing good weather: low median wind speed, high clear-sky fraction and the expectation of excellent seeing. Some practical aspects of access to these remote locations and operation and maintenance of equipment there are also discussed.Comment: 21 pages, 2 tables, 15 figures; accepted for publication in PAS

    Thermal Phase Variations of WASP-12b: Defying Predictions

    Get PDF
    [Abridged] We report Warm Spitzer full-orbit phase observations of WASP-12b at 3.6 and 4.5 micron. We are able to measure the transit depths, eclipse depths, thermal and ellipsoidal phase variations at both wavelengths. The large amplitude phase variations, combined with the planet's previously-measured day-side spectral energy distribution, is indicative of non-zero Bond albedo and very poor day-night heat redistribution. The transit depths in the mid-infrared indicate that the atmospheric opacity is greater at 3.6 than at 4.5 micron, in disagreement with model predictions, irrespective of C/O ratio. The secondary eclipse depths are consistent with previous studies. We do not detect ellipsoidal variations at 3.6 micron, but our parameter uncertainties -estimated via prayer-bead Monte Carlo- keep this non-detection consistent with model predictions. At 4.5 micron, on the other hand, we detect ellipsoidal variations that are much stronger than predicted. If interpreted as a geometric effect due to the planet's elongated shape, these variations imply a 3:2 ratio for the planet's longest:shortest axes and a relatively bright day-night terminator. If we instead presume that the 4.5 micron ellipsoidal variations are due to uncorrected systematic noise and we fix the amplitude of the variations to zero, the best fit 4.5 micron transit depth becomes commensurate with the 3.6 micron depth, within the uncertainties. The relative transit depths are then consistent with a Solar composition and short scale height at the terminator. Assuming zero ellipsoidal variations also yields a much deeper 4.5 micron eclipse depth, consistent with a Solar composition and modest temperature inversion. We suggest future observations that could distinguish between these two scenarios.Comment: 19 pages, 10 figures, ApJ in press. Improved discussion of gravity brightenin

    Disciplining the Sex Ratio:Exploring the Governmentality of Female Feticide in India

    Get PDF
    The ‘girl child’ has attracted a considerable amount of attention in India as an object of policy addressing gender discrimination. This article examines the field of campaigns seeking to address female foeticide and positions the public discourse on the ‘girl child’ and sex selective abortion in India within a broad cultural backdrop of son preference. The article argues that anti-female foeticide campaigns exist within a disciplinary domain of female foeticide which both generates a discourse of saving the ‘girl child’ and also shows attempts to utilise both incentives and punitive measures in carving out a female foeticide carceral space

    Promoting a Culture of Safety: Use of the Hospital Survey on Patient Safety Culture in CAHs (Briefing Paper #30)

    Get PDF
    The Institute of Medicine has emphasized the importance of establishing a culture of safety to improve patient care, specifically: developing clear, highly visible patient safety programs that focus organizational attention on safety; using non-punitive systems for reporting and analyzing errors; incorporating well-established safety principles such as standardized and simplified equipment, supplies, and work processes; and establishing proven interdisciplinary team training programs for providers. We sought to investigate the degree to which these elements are present or absent in Critical Access Hospitals. This report presents the results of a literature review and a rural patient safety expert panel comprised of representatives from federal and state government and academia. There is another policy brief that summarizes these same findings

    On the detection of Lorentzian profiles in a power spectrum: A Bayesian approach using ignorance priors

    Get PDF
    Aims. Deriving accurate frequencies, amplitudes, and mode lifetimes from stochastically driven pulsation is challenging, more so, if one demands that realistic error estimates be given for all model fitting parameters. As has been shown by other authors, the traditional method of fitting Lorentzian profiles to the power spectrum of time-resolved photometric or spectroscopic data via the Maximum Likelihood Estimation (MLE) procedure delivers good approximations for these quantities. We, however, show that a conservative Bayesian approach allows one to treat the detection of modes with minimal assumptions (i.e., about the existence and identity of the modes). Methods. We derive a conservative Bayesian treatment for the probability of Lorentzian profiles being present in a power spectrum and describe an efficient implementation that evaluates the probability density distribution of parameters by using a Markov-Chain Monte Carlo (MCMC) technique. Results. Potentially superior to "best-fit" procedure like MLE, which only provides formal uncertainties, our method samples and approximates the actual probability distributions for all parameters involved. Moreover, it avoids shortcomings that make the MLE treatment susceptible to the built-in assumptions of a model that is fitted to the data. This is especially relevant when analyzing solar-type pulsation in stars other than the Sun where the observations are of lower quality and can be over-interpreted. As an example, we apply our technique to CoRoT observations of the solar-type pulsator HD 49933.Comment: 12 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Evidence for Eccentric, Precessing Gaseous Debris in the Circumstellar Absorption toward WD 1145 + 017

    Get PDF
    We present time-series spectra revealing changes in the circumstellar line profiles for the white dwarf WD 1145 + 017. Over the course of 2.2 years, the spectra show complete velocity reversals in the circumstellar absorption, moving from strongly redshifted in 2015 April to strongly blueshifted in 2017 June. The depth of the absorption also varies, increasing by a factor of two over the same period. The dramatic changes in the line profiles are consistent with eccentric circumstellar gas rings undergoing general relativistic precession. As the argument of periapsis of the rings changes relative to the line of sight, the transiting gas shifts from receding in 2016 to approaching in 2017. Based on the precession timescales in the favored model, we make predictions for the line profiles over the next few years. Spectroscopic monitoring of WD 1145 + 017 will test these projections and aid in developing more accurate white dwarf accretion disk models

    A search for p-modes and other variability in the binary system 85 Pegasi using MOST photometry

    Get PDF
    Context: Asteroseismology has great potential for the study of metal-poor stars due to its sensitivity to determine stellar ages. Aims: Our goal was to detect p-mode oscillations in the metal-poor sub-dwarf 85 Peg A and to search for other variability on longer timescales. Methods: We have obtained continuous high-precision photometry of the binary system 85 Pegasi with the MOST space telescope in two seasons (2005 & 2007). Furthermore, we redetermined vsini for 85 Peg A using high resolution spectra obtained through the ESO archive, and used photometric spot modeling to interpret long periodic variations. Results: Our frequency analysis yields no convincing evidence for p-modes significantly above a noise level of 4 ppm. Using simulated p-mode patterns we provide upper RMS amplitude limits for 85 Peg A. The light curve shows evidence for variability with a period of about 11 d and this periodicity is also seen in the follow up run in 2007; however, as different methods to remove instrumental trends in the 2005 run yield vastly different results, the exact shape and periodicity of the 2005 variability remain uncertain. Our re-determined vsini value for 85 Peg A is comparable to previous studies and we provide realistic uncertainties for this parameter. Using these values in combination with simple photometric spot models we are able to reconstruct the observed variations. Conclusions: The null-detection of p-modes in 85 Peg A is consistent with theoretical values for pulsation amplitudes in this star. The detected long-periodic variation must await confirmation by further observations with similar or better precision and long-term stability. If the 11 d periodicity is real, rotational modulation of surface features on one of the components is the most likely explanation.Comment: 11 pages, 9 figures, accepted for publication in A&

    Stellar activity of planetary host star HD 189733

    Full text link
    Extra-solar planet search programs require high-precision velocity measurements. They need to study how to disentangle radial-velocity variations due to Doppler motion from the noise induced by stellar activity. We monitored the active K2V star HD 189733 and its transiting planetary companion that has a 2.2-day orbital period. We used the high-resolution spectograph SOPHIE mounted on the 1.93-m telescope at the Observatoire de Haute-Provence to obtain 55 spectra of HD 189733 over nearly two months. We refined the HD 189733b orbit parameters and put limits on the eccentricity and on a long-term velocity gradient. After subtracting the orbital motion of the planet, we compared the variability of spectroscopic activity indices to the evolution of the radial-velocity residuals and the shape of spectral lines. The radial velocity, the spectral-line profile and the activity indices measured in HeI (5875.62 \AA), Halpha (6562.81 \AA) and the CaII H&K lines (3968.47 \AA and 3933.66 \AA, respectively) show a periodicity around the stellar rotation period and the correlations between them are consistent with a spotted stellar surface in rotation. We used such correlations to correct for the radial-velocity jitter due to stellar activity. This results in achieving high precision on the orbit parameters, with a semi-amplitude K = 200.56 \pm 0.88 m.s-1 and a derived planet mass of M_{P}=1.13 \pm 0.03 MJup_{Jup}.Comment: 9 pages, 2 tables, 9 figures, accepted for publication in A&A on 20/11/200

    Transiting Disintegrating Planetary Debris around WD 1145+017

    Full text link
    More than a decade after astronomers realized that disrupted planetary material likely pollutes the surfaces of many white dwarf stars, the discovery of transiting debris orbiting the white dwarf WD 1145+017 has opened the door to new explorations of this process. We describe the observational evidence for transiting planetary material and the current theoretical understanding (and in some cases lack thereof) of the phenomenon.Comment: Invited review chapter. Accepted March 23, 2017 and published October 7, 2017 in the Handbook of Exoplanets. 15 pages, 10 figure
    corecore