2,981 research outputs found

    Tropospheric gravity waves observed by three closely spaced ST radars

    Get PDF
    Clear-air radar experiments were carried out on the southern coast of France during the (ALPEX) Alpine experiment program vertically directed stratosphere-troposphere-radars were set up with spacings of about 5 to 6 km. The temporal and spectral characteristics of the vertical velocity fluctuations were examined. The horizontal and vertical properties of gravity waves in the lower atmosphere were analyzed. The techniques used and the first results from this wave study are described

    Kaon production at subthreshold and threshold energies

    Get PDF
    We summarize what we have learnt about the kaon production in nucleus-nucleus collisions in the last decade. We will address three questions: a) Is the K+K^+ production sensitive to the nuclear equation of state? b) How can it happen that at the same excess energy the same number of K+K^+ and KK^- are produced in heavy ion collisions although the elementary cross section in pp collisions differs by orders of magnitudes? and c) Why kaons don't flow?Comment: 5 pages, 4 figures, contribution to Strange Quark Matter 200

    Flow angle from intermediate mass fragment measurements

    Full text link
    Directed sideward flow of light charged particles and intermediate mass fragments was measured in different symmetric reactions at bombarding energies from 90 to 800 AMeV. The flow parameter is found to increase with the charge of the detected fragment up to Z = 3-4 and then turns into saturation for heavier fragments. Guided by simple simulations of an anisotropic expanding thermal source, we show that the value at saturation can provide a good estimate of the flow angle, Θflow\Theta_{flow}, in the participant region. It is found that Θflow\Theta_{flow} depends strongly on the impact parameter. The excitation function of Θflow\Theta_{flow} reveals striking deviations from the ideal hydrodynamical scaling. The data exhibit a steep rise of \Theta_{\flow} to a maximum at around 250-400 AMeV, followed by a moderate decrease as the bombarding energy increases further.Comment: 28 pages Revtex, 6 figures (ps files), to appear in Nucl.Phys.

    The value of multiple data set calibration versus model complexity for improving the performance of hydrological models in mountain catchments

    Get PDF
    The assessment of snow, glacier, and rainfall runoff contribution to discharge in mountain streams is of major importance for an adequate water resource management. Such contributions can be estimated via hydrological models, provided that the modeling adequately accounts for snow and glacier melt, as well as rainfall runoff. We present a multiple data set calibration approach to estimate runoff composition using hydrological models with three levels of complexity. For this purpose, the code of the conceptual runoff model HBV-light was enhanced to allow calibration and validation of simulations against glacier mass balances, satellite-derived snow cover area and measured discharge. Three levels of complexity of the model were applied to glacierized catchments in Switzerland, ranging from 39 to 103 km2. The results indicate that all three observational data sets are reproduced adequately by the model, allowing an accurate estimation of the runoff composition in the three mountain streams. However, calibration against only runoff leads to unrealistic snow and glacier melt rates. Based on these results, we recommend using all three observational data sets in order to constrain model parameters and compute snow, glacier, and rain contributions. Finally, based on the comparison of model performance of different complexities, we postulate that the availability and use of different data sets to calibrate hydrological models might be more important than model complexity to achieve realistic estimations of runoff composition

    Temperature distribution in selective laser-tissue interaction

    Get PDF
    Selective photothermal interaction using dye enhancement has proven to be effective in minimizing surrounding tissue damage and delivering energy to target tissue. During laser irradiation, the process of photon absorption and thermal energy diffusion in the target tissue and its surrounding tissue are crucial. Such information allows the selection of proper operating parameters such as dye concentrations, laser power, and exposure time for optimal therapeutic effect. Combining the Monte Carlo method for energy absorption and the finite difference method for heat diffusion, the temperature distributions in target tissue and surrounding tissue in dye enhanced laser photothermal interaction are obtained. Different tissue configurations and dye enhancement are used in the simulation, and different incident beam sizes are also used to determine optimum beam sizes for various tissue configurations. Our results show that the algorithm developed in this study could predict the thermal outcome of laser irradiation. Our simulation indicates that with appropriate absorption enhancement of the target tissue, the temperature in the target tissue and in the surrounding tissue can be effectively controlled. This method can be used for optimization of lesion treatment using laser photothermal interactions. It may also provide guidance for laser immunotherapy in cancer treatment, since the immunological responses are believed to be related to tissue temperature changes

    Heavy quark(onium) at LHC: the statistical hadronization case

    Full text link
    We discuss the production of charmonium in nuclear collisions within the framework of the statistical hadronization model. We demonstrate that the model reproduces very well the availble data at RHIC. We provide predictions for the LHC energy where, dependently on the charm production cross section, a dramatically different behaviour of charmonium production as a function of centrality might be expected. We discuss also the case in elementary collisions, where clearly the statistical model does not reproduce the measurements.Comment: 8 pages, 5 figures; proceeding of SQM09, Buzios, Brazil, to be published in J. Phys.

    Histidine switch controlling pH-dependent protein folding and DNA binding in a transcription factor at the core of synthetic network devices

    Get PDF
    © 2016 The Royal Society of Chemistry. Therapeutic strategies have been reported that depend on synthetic network devices in which a urate-sensing transcriptional regulator detects pathological levels of urate and triggers production or release of urate oxidase. The transcription factor involved, HucR, is a member of the multiple antibiotic resistance (MarR) protein family. We show that protonation of stacked histidine residues at the pivot point of long helices that form the scaffold of the dimer interface leads to reversible formation of a molten globule state and significantly attenuated DNA binding at physiological temperatures. We also show that binding of urate to symmetrical sites in each protein lobe is communicated via the dimer interface. This is the first demonstration of regulation of a MarR family transcription factor by pH-dependent interconversion between a molten globule and a compact folded state. Our data further suggest that HucR may be utilized in synthetic devices that depend on detection of pH changes

    Hard probes in heavy ion collisions at the LHC: heavy flavour physics

    Full text link
    We present the results from the heavy quarks and quarkonia working group. This report gives benchmark heavy quark and quarkonium cross sections for pppp and pApA collisions at the LHC against which the AAAA rates can be compared in the study of the quark-gluon plasma. We also provide an assessment of the theoretical uncertainties in these benchmarks. We then discuss some of the cold matter effects on quarkonia production, including nuclear absorption, scattering by produced hadrons, and energy loss in the medium. Hot matter effects that could reduce the observed quarkonium rates such as color screening and thermal activation are then discussed. Possible quarkonium enhancement through coalescence of uncorrelated heavy quarks and antiquarks is also described. Finally, we discuss the capabilities of the LHC detectors to measure heavy quarks and quarkonia as well as the Monte Carlo generators used in the data analysis.Comment: 126 pages Latex; 96 figures included. Subgroup report, to appear in the CERN Yellow Book of the workshop: Hard Probes in Heavy Ion Collisions at the LHC. See also http://a.home.cern.ch/f/frixione/www/hvq.html for a version with better quality for a few plot
    corecore