11 research outputs found

    Changes in forest cover and carbon stocks of the coastal scarp forests of the Wild Coast, South Africa

    Get PDF
    Land-use intensification and declines in vegetative cover are considered pervasive threats to forests and biodiversity globally. The small extent and high biodiversity of indigenous forests in South Africa make them particularly important. Yet, relatively little is known about their rates of use and change. From analysis of past aerial photos we quantified rates of forest cover change in the Matiwane forests of the Wild Coast, South Africa, between 1942 and 2007, as well as quantified above- and belowground (to 0.5 m depth) carbon stocks based on a composite allometric equation derived for the area. Rates of forest conversion were spatially variable, with some areas showing no change and others more noticeable changes. Overall, the net reduction was 5.2% (0.08% p.a.) over the 65-year period. However, the rate of reduction has accelerated with time. Some of the reduction was balanced by natural reforestation into formerly cleared areas, but basal area, biomass and carbon stocks are still low in the reforested areas. The total carbon stock was highest in intact forests (311.7 ± 23.7 Mg C ha−1), followed by degraded forests (73.5 ± 12.3 Mg C ha−1) and least in regrowth forests (51.2 ± 6.2 Mg C ha−1). The greatest contribution to total carbon stocks was soil carbon, contributing 54% in intact forests, and 78% and 68% in degraded and regrowth forests, respectively. The Matiwane forests store 4.78 Tg C, with 4.7 Tg C in intact forests, 0.06 Tg C in degraded forests and 0.02 Tg C in regrowth forests. The decrease in carbon stocks within the forests as a result of the conversion of the forest area to agricultural fields was 0.19 Tg C and approximately 0.0003 Tg C was released through harvesting of firewood and building timber

    Local people and conservation officials’ perceptions on relationships and conflicts in South African protected areas

    Get PDF
    Protected areas (PAs) are often conflict-ridden, but conflict resolution mechanisms are often constrained by little appreciation of the perceptions of the principal agents (PA managers and local communities) about such conflicts. Getting local people’s support in PA management efforts is considered important for achieving conservation and livelihood goals. Using data from 13 nature reserves in South Africa, this study explores the perceptions of reserve managers and local communities about their relationships and the existence and underlying causes of conflicts. The findings showed sharp contrasts in perceptions between reserve managers and local communities. Reserve managers generally perceived that there were no conflicts with local communities and that their relationship with them was positive while local communities thought otherwise, claiming conflicts were centred around restricted access to PAs, lack of benefits from PAs and communication problems. These findings have profound implications for conservation, especially considering the importance of getting local people’s support in PA management

    Natural archives of long-range transported contamination at the remote lake Letšeng-la Letsie, Maloti Mountains, Lesotho

    Get PDF
    Naturally accumulating archives, such as lake sediments and wetland peats, in remote areas may be used to identify the scale and rates of atmospherically deposited pollutant inputs to natural ecosystems. Co-located lake sediment and wetland cores were collected from Letšeng-la Letsie, a remote lake in the Maloti Mountains of southern Lesotho. The cores were radiometrically dated and analysed for a suite of contaminants including trace metals and metalloids (Hg, Pb, Cu, Ni, Zn, As), fly-ash particles, stable nitrogen isotopes, polycyclic aromatic hydrocarbons (PAHs) and persistent organic pollutants such as polychlorinated biphenyls (PCBs), polybrominated flame retardants (PBDEs) and hexachlorobenzene (HCB). While most trace metals showed no recent enrichment, mercury, fly-ash particles, high molecular weight PAHs and total PCBs showed low but increasing levels of contamination since c.1970, likely the result of long-range transport from coal combustion and other industrial sources in the Highveld region of South Africa. However, back-trajectory analysis revealed that atmospheric transport from this region to southern Lesotho is infrequent and the scale of contamination is low. To our knowledge, these data represent the first palaeolimnological records and the first trace contaminant data for Lesotho, and one of the first multi-pollutant historical records for southern Africa. They therefore provide a baseline for future regional assessments in the context of continued coal combustion in South Africa through to the mid-21st century

    Funding begets biodiversity

    Get PDF
    Aim  Effective conservation of biodiversity relies on an unbiased knowledge of its distribution. Conservation priority assessments are typically based on the levels of species richness, endemism and threat. Areas identified as important receive the majority of conservation investments, often facilitating further research that results in more species discoveries. Here, we test whether there is circularity between funding and perceived biodiversity, which may reinforce the conservation status of areas already perceived to be important while other areas with less initial funding may remain overlooked. Location  Eastern Arc Mountains, Tanzania. Methods  We analysed time series data (1980–2007) of funding (n = 134 projects) and plant species records (n = 75,631) from a newly compiled database. Perceived plant diversity, over three decades, is regressed against funding and environmental factors, and variances decomposed in partial regressions. Cross-correlations are used to assess whether perceived biodiversity drives funding or vice versa. Results  Funding explained 65% of variation in perceived biodiversity patterns – six times more variation than accounted for by 34 candidate environmental factors. Cross-correlation analysis showed that funding is likely to be driving conservation priorities and not vice versa. It was also apparent that investment itself may trigger further investments as a result of reduced start-up costs for new projects in areas where infrastructure already exists. It is therefore difficult to establish whether funding, perceived biodiversity, or both drive further funding. However, in all cases, the results suggest that regional assessments of biodiversity conservation importance may be biased by investment. Funding effects might also confound studies on mechanisms of species richness patterns. Main conclusions  Continued biodiversity loss commands urgent conservation action even if our knowledge of its whereabouts is incomplete; however, by concentrating inventory funds in areas already perceived as important in terms of biodiversity and/or where start-up costs are lower, we risk losing other areas of underestimated or unknown value
    corecore