56 research outputs found

    Cáncer del epitelio folicular tiroideo: identificación de procesos biológicos, marcadores moleculares y nuevas dianas terapéuticas

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular . Fecha de lectura: 17-06-0

    Hsa-miR-139-5p is a prognostic thyroid cancer marker involved in HNRNPF-mediated alternative splicing.

    Get PDF
    It is critical to identify biomarkers and functional networks associated with aggressive thyroid cancer to anticipate diseaseprogression and facilitate personalized patient management. We performed miRNome sequencing of 46 thyroid tumorsenriched with advanced disease patients with a median follow-up of 96 months. MiRNome profiles correlated with tumor-specific histopathological and molecular features, such as stromal cell infiltration and tumor driver mutation. Differentialexpression analysis revealed a consistent hsa-miR-139-5p downexpression in primary carcinomas from patients withrecurrent/metastatic disease compared to disease-free patients, sustained in paired local metastases and validated in publiclypost-print1,62 M

    Comprehensive molecular analysis of immortalization hallmarks in thyroid cancer reveals new prognostic markers

    Get PDF
    TERT promoter mutation; Subtelomeric gene expression; Telomere shorteningMutació del promotor TERT; Expressió gènica subtelomèrica; Escurçament dels telòmersMutación del promotor TERT; Expresión génica subtelomérica; Acortamiento de los telómerosBackground Comprehensive molecular studies on tumours are needed to delineate immortalization process steps and identify sensitive prognostic biomarkers in thyroid cancer. Methods and Results In this study, we extensively characterize telomere-related alterations in a series of 106 thyroid tumours with heterogeneous clinical outcomes. Using a custom-designed RNA-seq panel, we identified five telomerase holoenzyme-complex genes upregulated in clinically aggressive tumours compared to tumours from long-term disease-free patients, being TERT and TERC denoted as independent prognostic markers by multivariate regression model analysis. Characterization of alterations related to TERT re-expression revealed that promoter mutations, methylation and/or copy gains exclusively co-occurred in clinically aggressive tumours. Quantitative-FISH (fluorescence in situ hybridization) analysis of telomere lengths showed a significant shortening in these carcinomas, which matched with a high proliferative rate measured by Ki-67 immunohistochemistry. RNA-seq data analysis indicated that short-telomere tumours exhibit an increased transcriptional activity in the 5-Mb-subtelomeric regions, site of several telomerase-complex genes. Gene upregulation enrichment was significant for specific chromosome-ends such as the 5p, where TERT is located. Co-FISH analysis of 5p-end and TERT loci showed a more relaxed chromatin configuration in short telomere-length tumours compared to normal telomere-length tumours. Conclusions Overall, our findings support that telomere shortening leads to a 5p subtelomeric region reorganization, facilitating the transcription and accumulation of alterations at TERT-locus.This work was supported by Projects PI17/01796 and PI20/01169 [Instituto de Salud Carlos III (ISCIII), Acción Estratégica en Salud, cofinanciado a través del Fondo Europeo de Desarrollo Regional (FEDER)] and Comunidad de Madrid (S2017/BMD-3724; TIRONET2-CM) to MR. CM-C was partially supported by a grant from the Fundación Científica Asociación Española Contra el Cáncer (AIO15152858 MONT). LJL-G was supported both by the Banco Santander Foundation – CNIO Fellowship and by ‘la Caixa’ Foundation (ID 100010434), under agreement LCF/BQ/PI20/11760011. AMM-M was supported by CAM (S2017/BMD-3724; TIRONET2-CM). MM was supported by the Ministerio de Ciencia, Innovación y Universidades (Spain; ‘Formación del Profesorado Universitario – FPU’ fellowship (FPU18/00064)). We thank CNIO Biobank for their support with the frozen specimens processing. We thank the Spanish National Tumor Bank Network (RD09/0076/00047) for the support in obtaining tumour samples, and all patients, physicians and tumour biobanks involved in the study

    Novel DNMT3A Germline Variant in a Patient with Multiple Paragangliomas and Papillary Thyroid Carcinoma

    Get PDF
    Over the past few years, next generation technologies have been applied to unravel the genetics of rare inherited diseases, facilitating the discovery of new susceptibility genes. We recently found germline DNMT3A gain-of-function variants in two patients with head and neck paragangliomas causing a characteristic hypermethylated DNA profile. Here, whole-exome sequencing identifies a novel germline DNMT3A variant (p.Gly332Arg) in a patient with bilateral carotid paragangliomas, papillary thyroid carcinoma and idiopathic intellectual disability. The variant, located in the Pro-Trp-Trp-Pro (PWWP) domain of the protein involved in chromatin targeting, affects a residue mutated in papillary thyroid tumors and located between the two residues found mutated in microcephalic dwarfism patients. Structural modelling of the variant in the DNMT3A PWWP domain predicts that the interaction with H3K36me3 will be altered. An increased methylation of DNMT3A target genes, compatible with a gain-of-function effect of the alteration, was observed in saliva DNA from the proband and in one independent acute myeloid leukemia sample carrying the same p.Gly332Arg variant. Although further studies are needed to support a causal role of DNMT3A variants in paraganglioma, the description of a new DNMT3A alteration in a patient with multiple clinical features suggests a heterogeneous phenotypic spectrum related to DNMT3A germline variants

    Multilayer OMIC data in medullary thyroid carcinoma identifies the STAT3 pathway as a potential therapeutic target in RETM918T tumors

    Get PDF
    Purpose: Medullary thyroid carcinoma (MTC) is a rare disease with few genetic drivers, and the etiology specific to each known susceptibility mutation remains unknown. Exploiting multilayer genomic data, we focused our interest on the role of aberrant DNA methylation in MTC development.Experimental Design: We performed genome-wide DNA methylation profiling assessing more than 27,000 CpGs in the largest MTC series reported to date, comprising 48 molecularly characterized tumors. mRNA and miRNA expression data were available for 33 and 31 tumors, respectively. Two human MTC cell lines and 101 paraffin-embedded MTCs were used for validation.Results: The most distinctive methylome was observed for RETM918T-related tumors. Integration of methylation data with mRNA and miRNA expression data identified genes negatively regulated by promoter methylation. These in silico findings were confirmed in vitro for PLCB2, DKK4, MMP20, and miR-10a, -30a, and -200c. The mutation-specific aberrant methylation of PLCB2, DKK4, and MMP20 was validated in 25 independent MTCs by bisulfite pyrosequencing. The methylome and transcriptome data underscored JAK/Stat pathway involvement in RETM918T MTCs. Immunostaining [immunohistochemistry (IHC)] for the active form of signaling effector STAT3 was performed in a series of 101 MTCs. As expected, positive IHC was associated with RETM918T-bearing tumors (P < 0.02). Pharmacologic inhibition of STAT3 activity increased the sensitivity to vandetanib of the RETM918T-positive MTC cell line, MZ-CRC-1.Conclusions: Multilayer OMIC data analysis uncovered methylation hallmarks in genetically defined MTCs and revealed JAK/Stat signaling effector STAT3 as a potential therapeutic target for the treatment of RETM918T MTCs.This work was supported by the Fondo de Investigaciones Sanitarias (FIS) project PI14/00240 and the Comunidad de Madrid (Grant S2011/BMD-2328 TIRONET) to MR. LI-P is supported by the Centro de Investigacion Biomédica en Red de Enfermedades Raras (CIBERER). VM was supported by a predoctoral fellowship from the "la Caixa"/CNIO international PhD programme. CM-C is supported by a postdoctoral fellowship from the Fundación AECC

    Interlaboratory analytical validation of a Next-generation sequencing strategy for clonotypic assessment and minimal residual disease monitoring in multiple myeloma

    Get PDF
    [Context]: Minimal residual disease (MRD) is a major prognostic factor in multiple myeloma, although validated technologies are limited. [Objective]: To standardize the performance of the LymphoTrack next-generation sequencing (NGS) assays (Invivoscribe), targeting clonal immunoglobulin rearrangements, in order to reproduce the detection of tumor clonotypes and MRD quantitation in myeloma. [Design]: The quantification ability of the assay was evaluated through serial dilution experiments. Paired samples from 101 patients were tested by LymphoTrack, using Sanger sequencing and EuroFlow's next-generation flow (NGF) assay as validated references for diagnostic and follow-up evaluation, respectively. MRD studies using LymphoTrack were performed in parallel at 2 laboratories to evaluate reproducibility. [Results]: Sensitivity was set as 1.3 tumor cells per total number of input cells. Clonality was confirmed in 99% and 100% of cases with Sanger and NGS, respectively, showing great concordance (97.9%), although several samples had minor discordances in the nucleotide sequence of rearrangements. Parallel NGS was performed in 82 follow-up cases, achieving a median sensitivity of 0.001%, while for NGF, median sensitivity was 0.0002%. Reproducibility of LymphoTrack-based MRD studies (85.4%) and correlation with NGF (R2 > 0.800) were high. Bland-Altman tests showed highly significant levels of agreement between flow and sequencing. [Conclusions]: Taken together, we have shown that LymphoTrack is a suitable strategy for clonality detection and MRD evaluation, with results comparable to gold standard procedures. Multiple myeloma (MM) is a plasma-cell dyscrasia characterized by the accumulation of plasma cells in the bone marrow that produces an excess of clonal immunoglobulins (M-protein or monoclonal component).1 New treatment approaches have increased the number of patients achieving complete response (CR),2–5 progressively improving progression-free and overall survival rates in the last 10 years.6–11 Nonetheless, the presence of low levels of drug-resistant cells (known as minimal residual disease, MRD)12–14 that remain undetected by conventional serologic and morphologic methods explains frequent relapses with this disease, which is still considered an incurable illness.Minimal residual disease is currently considered one of the most informative prognostic parameters, since those patients with undetectable disease have shown prolonged survival rates as compared with MRD-positive patients,15–17 and this difference is still significant even when patients achieving only stringent complete response (sCR) are taken into account.18 The International Myeloma Working Group (IMWG) defined MRD positivity as the persistence of clonal malignant plasma cells assessed with a sensitivity of at least 10−5 (1 malignant cell per hundred thousand normal cells)19 ; therefore, MRD should be monitored with only highly sensitive methods. To date, 3 different approaches have been tested for MRD monitoring in hematologic malignancies: immunophenotypic (multiparametric flow cytometry [MFC]),20 molecular (quantitative polymerase chain reaction [PCR], next-generation sequencing [NGS], digital PCR),21–23 and imaging tools (positron emission tomography–computed tomography; magnetic resonance imaging).24,25 However, in MM standardization has been achieved only for MFC26 and NGS.27,28 As a result, the IMWG recommended the use of highly sensitive, standardized flow and sequencing approaches,19 including EuroFlow's next-generation flow (NGF)29 and Adaptive Biotechnologies' ClonoSEQ solutions (Adaptive Biotechnologies, Seattle, Washington). NGF is a 2-tube, 8-color flow assay that allows the simultaneous analysis of 10 million cells, providing a sensitivity of around 2·10−6.This work was partially supported by the Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Economy and Competitiveness PI15/01956, CIBERONC-CB16/12/00233, and “Una manera de hacer Europa” (Innocampus; CEI-2010-1-0010). García-Álvarez, Prieto-Conde, and Jiménez were supported by the Fundación Española de Hematología y Hemoterapia (FEHH, cofunded by Fundación Cris in the latter case), Medina by the European Social Fund through the University of Salamanca and the ISCIII (FI19/00320), and Sarasquete by the ISCIII (CPII18/00028). All Spanish funding is cosponsored by the European Union FEDER program

    Transmitted drug resistance to antiretroviral drugs in Spain during the period 2019–2021

    Full text link
    To evaluate the prevalence of transmitted drug resistance (TDR) to nucleoside and nonnucleoside reverse transcriptase inhibitors (NRTI, NNRTI), protease inhibitors (PI), and integrase strand transfer inhibitors (INSTI) in Spain during the period 2019-2021, as well as to evaluate transmitted clinically relevant resistance (TCRR) to antiretroviral drugs. Reverse transcriptase (RT), protease (Pro), and Integrase (IN) sequences from 1824 PLWH (people living with HIV) were studied. To evaluate TDR we investigated the prevalence of surveillance drug resistance mutations (SDRM). To evaluate TCRR (any resistance level >= 3), and for HIV subtyping we used the Stanford v.9.4.1 HIVDB Algorithm and an in-depth phylogenetic analysis. The prevalence of NRTI SDRMs was 3.8% (95% CI, 2.8%-4.6%), 6.1% (95% CI, 5.0%-7.3%) for NNRTI, 0.9% (95% CI, 0.5%-1.4%) for PI, and 0.2% (95% CI, 0.0%-0.9%) for INSTI. The prevalence of TCRR to NRTI was 2.1% (95% CI, 1.5%-2.9%), 11.8% for NNRTI, (95% CI, 10.3%-13.5%), 0.2% (95% CI, 0.1%-0.6%) for PI, and 2.5% (95% CI, 1.5%-4.1%) for INSTI. Most of the patients were infected by subtype B (79.8%), while the majority of non-Bs were CRF02_AG (n = 109, 6%). The prevalence of INSTI and PI resistance in Spain during the period 2019-2021 is low, while NRTI resistance is moderate, and NNRTI resistance is the highest. Our results support the use of integrase inhibitors as first-line treatment in Spain. Our findings highlight the importance of ongoing surveillance of TDR to antiretroviral drugs in PLWH particularly with regard to first-line antiretroviral therapy

    The Variant rs1867277 in FOXE1 Gene Confers Thyroid Cancer Susceptibility through the Recruitment of USF1/USF2 Transcription Factors

    Get PDF
    In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era

    Community-developed checklists for publishing images and image analysis

    Get PDF
    Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality of microscopy data is in publications.Comment: 28 pages, 8 Figures, 3 Supplmentary Figures, Manuscript, Essential recommendations for publication of microscopy image dat

    Integrative multi-omics analysis identifies a prognostic miRNA signature and a targetable miR-21-3p/TSC2/ mTOR axis in metastatic pheochromocytoma/ paraganglioma

    Get PDF
    Rationale: Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors that present variable outcomes. To date, no effective therapies or reliable prognostic markers are available for patients who develop metastatic PPGL (mPPGL). Our aim was to discover robust prognostic markers validated through in vitro models, and define specific therapeutic options according to tumor genomic features. Methods: We analyzed three PPGL miRNome datasets (n=443), validated candidate markers and assessed them in serum samples (n=36) to find a metastatic miRNA signature. An integrative study of miRNome, transcriptome and proteome was performed to find miRNA targets, which were further characterized in vitro. Results: A signature of six miRNAs (miR-21-3p, miR-183-5p, miR-182-5p, miR-96-5p, miR-551b-3p, and miR-202-5p) was associated with metastatic risk and time to progression. A higher expression of five of these miRNAs was also detected in PPGL patients’ liquid biopsies compared with controls. The combined expression of miR-21-3p/miR-183-5p showed the best power to predict metastasis (AUC=0.804, P=4.67·10-18), and was found associated in vitro with pro-metastatic features, such as neuroendocrine-mesenchymal transition phenotype, and increased cell migration rate. A pan-cancer multi-omic integrative study correlated miR-21-3p levels with TSC2 expression, mTOR pathway activation, and a predictive signature for mTOR inhibitor-sensitivity in PPGLs and other cancers. Likewise, we demonstrated in vitro a TSC2 repression and an enhanced rapamycin sensitivity upon miR-21-3p expression. Conclusions: Our findings support the assessment of miR-21-3p/miR-183-5p, in tumors and liquid biopsies, as biomarkers for risk stratification to improve the PPGL patients’ management. We propose miR-21-3p to select mPPGL patients who may benefit from mTOR inhibitors
    corecore