200 research outputs found

    Effects of Butyrate Supplementation on Inflammation and Kidney Parameters in Type 1 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial

    Get PDF
    Type 1 diabetes is associated with increased intestinal inflammation and decreased abundance of butyrate-producing bacteria. We investigated the effect of butyrate on inflammation, kidney parameters, HbA1c, serum metabolites and gastrointestinal symptoms in persons with type 1 diabetes, albuminuria and intestinal inflammation. We conducted a randomized placebo-controlled, double-blind, parallel clinical study involving 53 participants randomized to 3.6 g sodium butyrate daily or placebo for 12 weeks. The primary endpoint was the change in fecal calprotectin. Additional endpoints were the change in fecal short chain fatty acids, intestinal alkaline phosphatase activity and immunoglobulins, serum lipopolysaccharide, CRP, albuminuria, kidney function, HbA1c, metabolites and gastrointestinal symptoms. The mean age was 54 ± 13 years, and the median [Q1:Q3] urinary albumin excretion was 46 [14:121] mg/g. The median fecal calprotectin in the butyrate group was 48 [26:100] μg/g at baseline, and the change was −1.0 [−20:10] μg/g; the median in the placebo group was 61 [25:139] μg/g at baseline, and the change was −12 [−95:1] μg/g. The difference between the groups was not significant (p = 0.24); neither did we find an effect of butyrate compared to placebo on the other inflammatory markers, kidney parameters, HbA1c, metabolites nor gastrointestinal symptoms. Twelve weeks of butyrate supplementation did not reduce intestinal inflammation in persons with type 1 diabetes, albuminuria and intestinal inflammation

    Effects of Butyrate Supplementation on Inflammation and Kidney Parameters in Type 1 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial

    Get PDF
    Type 1 diabetes is associated with increased intestinal inflammation and decreased abundance of butyrate-producing bacteria. We investigated the effect of butyrate on inflammation, kidney parameters, HbA1c, serum metabolites and gastrointestinal symptoms in persons with type 1 diabetes, albuminuria and intestinal inflammation. We conducted a randomized placebo-controlled, double-blind, parallel clinical study involving 53 participants randomized to 3.6 g sodium butyrate daily or placebo for 12 weeks. The primary endpoint was the change in fecal calprotectin. Additional endpoints were the change in fecal short chain fatty acids, intestinal alkaline phosphatase activity and immunoglobulins, serum lipopolysaccharide, CRP, albuminuria, kidney function, HbA1c, metabolites and gastrointestinal symptoms. The mean age was 54 ± 13 years, and the median [Q1:Q3] urinary albumin excretion was 46 [14:121] mg/g. The median fecal calprotectin in the butyrate group was 48 [26:100] μg/g at baseline, and the change was −1.0 [−20:10] μg/g; the median in the placebo group was 61 [25:139] μg/g at baseline, and the change was −12 [−95:1] μg/g. The difference between the groups was not significant (p = 0.24); neither did we find an effect of butyrate compared to placebo on the other inflammatory markers, kidney parameters, HbA1c, metabolites nor gastrointestinal symptoms. Twelve weeks of butyrate supplementation did not reduce intestinal inflammation in persons with type 1 diabetes, albuminuria and intestinal inflammation

    Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study.

    Get PDF
    BACKGROUND: There is growing evidence that Alzheimer disease (AD) is a pervasive metabolic disorder with dysregulation in multiple biochemical pathways underlying its pathogenesis. Understanding how perturbations in metabolism are related to AD is critical to identifying novel targets for disease-modifying therapies. In this study, we test whether AD pathogenesis is associated with dysregulation in brain transmethylation and polyamine pathways. METHODS AND FINDINGS: We first performed targeted and quantitative metabolomics assays using capillary electrophoresis-mass spectrometry (CE-MS) on brain samples from three groups in the Baltimore Longitudinal Study of Aging (BLSA) (AD: n = 17; Asymptomatic AD [ASY]: n = 13; Control [CN]: n = 13) (overall 37.2% female; mean age at death 86.118 ± 9.842 years) in regions both vulnerable and resistant to AD pathology. Using linear mixed-effects models within two primary brain regions (inferior temporal gyrus [ITG] and middle frontal gyrus [MFG]), we tested associations between brain tissue concentrations of 26 metabolites and the following primary outcomes: group differences, Consortium to Establish a Registry for Alzheimer's Disease (CERAD) (neuritic plaque burden), and Braak (neurofibrillary pathology) scores. We found significant alterations in concentrations of metabolites in AD relative to CN samples, as well as associations with severity of both CERAD and Braak, mainly in the ITG. These metabolites represented biochemical reactions in the (1) methionine cycle (choline: lower in AD, p = 0.003; S-adenosyl methionine: higher in AD, p = 0.005); (2) transsulfuration and glutathione synthesis (cysteine: higher in AD, p < 0.001; reduced glutathione [GSH]: higher in AD, p < 0.001); (3) polyamine synthesis/catabolism (spermidine: higher in AD, p = 0.004); (4) urea cycle (N-acetyl glutamate: lower in AD, p < 0.001); (5) glutamate-aspartate metabolism (N-acetyl aspartate: lower in AD, p = 0.002); and (6) neurotransmitter metabolism (gamma-amino-butyric acid: lower in AD, p < 0.001). Utilizing three Gene Expression Omnibus (GEO) datasets, we then examined mRNA expression levels of 71 genes encoding enzymes regulating key reactions within these pathways in the entorhinal cortex (ERC; AD: n = 25; CN: n = 52) and hippocampus (AD: n = 29; CN: n = 56). Complementing our metabolomics results, our transcriptomics analyses also revealed significant alterations in gene expression levels of key enzymatic regulators of biochemical reactions linked to transmethylation and polyamine metabolism. Our study has limitations: our metabolomics assays measured only a small proportion of all metabolites participating in the pathways we examined. Our study is also cross-sectional, limiting our ability to directly test how AD progression may impact changes in metabolite concentrations or differential-gene expression. Additionally, the relatively small number of brain tissue samples may have limited our power to detect alterations in all pathway-specific metabolites and their genetic regulators. CONCLUSIONS: In this study, we observed broad dysregulation of transmethylation and polyamine synthesis/catabolism, including abnormalities in neurotransmitter signaling, urea cycle, aspartate-glutamate metabolism, and glutathione synthesis. Our results implicate alterations in cellular methylation potential and increased flux in the transmethylation pathways, increased demand on antioxidant defense mechanisms, perturbations in intermediate metabolism in the urea cycle and aspartate-glutamate pathways disrupting mitochondrial bioenergetics, increased polyamine biosynthesis and breakdown, as well as abnormalities in neurotransmitter metabolism that are related to AD

    Effects of Butyrate Supplementation on Inflammation and Kidney Parameters in Type 1 Diabetes : A Randomized, Double-Blind, Placebo-Controlled Trial

    Get PDF
    Type 1 diabetes is associated with increased intestinal inflammation and decreased abundance of butyrate-producing bacteria. We investigated the effect of butyrate on inflammation, kidney parameters, HbA1c, serum metabolites and gastrointestinal symptoms in persons with type 1 diabetes, albuminuria and intestinal inflammation. We conducted a randomized placebo-controlled, double-blind, parallel clinical study involving 53 participants randomized to 3.6 g sodium butyrate daily or placebo for 12 weeks. The primary endpoint was the change in fecal calprotectin. Additional endpoints were the change in fecal short chain fatty acids, intestinal alkaline phosphatase activity and immunoglobulins, serum lipopolysaccharide, CRP, albuminuria, kidney function, HbA1c, metabolites and gastrointestinal symptoms. The mean age was 54 +/- 13 years, and the median [Q1:Q3] urinary albumin excretion was 46 [14:121] mg/g. The median fecal calprotectin in the butyrate group was 48 [26:100] mu g/g at baseline, and the change was -1.0 [-20:10] mu g/g; the median in the placebo group was 61 [25:139] mu g/g at baseline, and the change was -12 [-95:1] mu g/g. The difference between the groups was not significant (p = 0.24); neither did we find an effect of butyrate compared to placebo on the other inflammatory markers, kidney parameters, HbA1c, metabolites nor gastrointestinal symptoms. Twelve weeks of butyrate supplementation did not reduce intestinal inflammation in persons with type 1 diabetes, albuminuria and intestinal inflammation.Peer reviewe

    APOE ε4 alters docosahexaenoic acid associations with preclinical markers of Alzheimer disease

    Get PDF
    Docosahexaenoic acid (DHA) is the main long chain omega-3 polyunsaturated fatty acids in the brain and accounts for 30% to 40% of fatty acids in the grey matter of the human cortex. Although the influence of DHA on memory function is widely researched, its association with brain volumes is under investigated and its association with spatial navigation is virtually unknown. This is despite the fact that spatial navigation deficits are a new cognitive fingerprint for symptomatic and asymptomatic Alzheimer’s disease (AD). We investigated the relationship between DHA levels and the major structural and cognitive markers of preclinical AD, namely hippocampal volume, entorhinal volume, and spatial navigation ability. Fifty-three cognitively normal adults underwent volumetric magnetic resonance imaging, measurements of serum DHA (including serum lysophosphatidylcholine DHA (LPC DHA)) and APOE ε4 genotyping. Relative regional brain volumes were calculated and linear regression models were fitted to examine DHA associations with brain volume. APOE genotype modulated serum DHA associations with entorhinal cortex volume and hippocampal volume. Linear models showed that greater serum DHA was associated with increased entorhinal cortex volume, but not hippocampal volume, in APOΕ ε4 non-carriers. APOE also interacted with serum LPC DHA to predict hippocampal volume. After testing interactions between DHA and APOE ε4 on brain volume, we investigated whether DHA and APOE interact to predict spatial navigation performance on a novel virtual reality diagnostic test for AD in an independent population of APOE genotyped adults (n = 46). Crucially, the APOE genotype modulated DHA associations with spatial navigation performance, showing that DHA was inversely associated with path integration in APOE ε4 carriers only. Interventions aiming to increase DHA status to protect against cognitive decline must consider APOE ε4 carrier status, and focus on higher doses of supplementary DHA to ensure adequate brain delivery

    Coping with iron limitation : a metabolomic study of Synechocystis sp. PCC 6803

    Get PDF
    Iron (Fe) is a key element for all living systems, especially for photosynthetic organisms because of its important role in the photosynthetic electron transport chain. Fe limitation in cyanobacteria leads to several physiological and morphological changes. However, the overall metabolic responses to Fe limitation are still poorly understood. In this study, we integrated elemental, stoichiometric, macromolecular, and metabolomic data to shed light on the responses of Synechocystis sp. PCC 6803, a non-N2-fixing freshwater cyanobacterium, to Fe limitation. Compared to Synechocystis growing at nutrient replete conditions, Fe-limited cultures had lower growth rates and amounts of chlorophyll a, RNA, RNA:DNA, C, N, and P, and higher ratios of protein:RNA, C:N, C:P, and N:P, in accordance with the growth rate hypothesis which predicts faster growing organisms will have decreased biomass RNA contents and C:P and N:P ratios. Fe-limited Synechocystis had lower amounts Fe, Mn, and Mo, and higher amount of Cu. Several changes in amino acids of cultures growing under Fe limitation suggest nitrogen limitation. In addition, we found substantial increases in stress-related metabolites in Fe-limited cyanobacteria such antioxidants. This study represents an advance in understanding the stoichiometric, macromolecular, and metabolic strategies that cyanobacteria use to cope with Fe limitation. This information, moreover, may further understanding of changes in cyanobacterial functions under scenarios of Fe limitation in aquatic ecosystems

    Predicting AT(N) pathologies in Alzheimer’s disease from blood-based proteomic data using neural networks

    Full text link
    Background and objective: Blood-based biomarkers represent a promising approach to help identify early Alzheimer's disease (AD). Previous research has applied traditional machine learning (ML) to analyze plasma omics data and search for potential biomarkers, but the most modern ML methods based on deep learning has however been scarcely explored. In the current study, we aim to harness the power of state-of-the-art deep learning neural networks (NNs) to identify plasma proteins that predict amyloid, tau, and neurodegeneration (AT[N]) pathologies in AD. Methods: We measured 3,635 proteins using SOMAscan in 881 participants from the European Medical Information Framework for AD Multimodal Biomarker Discovery study (EMIF-AD MBD). Participants underwent measurements of brain amyloid β (Aβ) burden, phosphorylated tau (p-tau) burden, and total tau (t-tau) burden to determine their AT(N) statuses. We ranked proteins by their association with Aβ, p-tau, t-tau, and AT(N), and fed the top 100 proteins along with age and apolipoprotein E (APOE) status into NN classifiers as input features to predict these four outcomes relevant to AD. We compared NN performance of using proteins, age, and APOE genotype with performance of using age and APOE status alone to identify protein panels that optimally improved the prediction over these main risk factors. Proteins that improved the prediction for each outcome were aggregated and nominated for pathway enrichment and protein-protein interaction enrichment analysis. Results: Age and APOE alone predicted Aβ, p-tau, t-tau, and AT(N) burden with area under the curve (AUC) scores of 0.748, 0.662, 0.710, and 0.795. The addition of proteins significantly improved AUCs to 0.782, 0.674, 0.734, and 0.831, respectively. The identified proteins were enriched in five clusters of AD-associated pathways including human immunodeficiency virus 1 infection, p53 signaling pathway, and phosphoinositide-3-kinase-protein kinase B/Akt signaling pathway. Conclusion: Combined with age and APOE genotype, the proteins identified have the potential to serve as blood-based biomarkers for AD and await validation in future studies. While the NNs did not achieve better scores than the support vector machine model used in our previous study, their performances were likely limited by small sample size. Keywords: Alzheimer’s disease; amyloid β; artificial neural networks; machine learning; neurodegeneration; plasma proteomics; ta

    A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model

    Get PDF
    Symbiotic gut microorganisms (microbiome) interact closely with the mammalian host's metabolism and are important determinants of human health. Here, we decipher the complex metabolic effects of microbial manipulation, by comparing germfree mice colonized by a human baby flora (HBF) or a normal flora to conventional mice. We perform parallel microbiological profiling, metabolic profiling by 1H nuclear magnetic resonance of liver, plasma, urine and ileal flushes, and targeted profiling of bile acids by ultra performance liquid chromatography–mass spectrometry and short-chain fatty acids in cecum by GC-FID. Top-down multivariate analysis of metabolic profiles reveals a significant association of specific metabotypes with the resident microbiome. We derive a transgenomic graph model showing that HBF flora has a remarkably simple microbiome/metabolome correlation network, impacting directly on the host's ability to metabolize lipids: HBF mice present higher ileal concentrations of tauro-conjugated bile acids, reduced plasma levels of lipoproteins but higher hepatic triglyceride content associated with depletion of glutathione. These data indicate that the microbiome modulates absorption, storage and the energy harvest from the diet at the systems level

    Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer’s disease

    Get PDF
    Funder: Medical Research Council; doi: http://dx.doi.org/10.13039/501100000265Funder: Alzheimer's research ukFunder: Alzheimer's societyFunder: InnomedFunder: National Institute for Health Research; doi: http://dx.doi.org/10.13039/501100000272Abstract: Background: Both serotonergic signalling disruption and systemic inflammation have been associated with the pathogenesis of Alzheimer’s disease (AD). The common denominator linking the two is the catabolism of the essential amino acid, tryptophan. Metabolism via tryptophan hydroxylase results in serotonin synthesis, whilst metabolism via indoleamine 2,3-dioxygenase (IDO) results in kynurenine and its downstream derivatives. IDO is reported to be activated in times of host systemic inflammation and therefore is thought to influence both pathways. To investigate metabolic alterations in AD, a large-scale metabolic phenotyping study was conducted on both urine and serum samples collected from a multi-centre clinical cohort, consisting of individuals clinically diagnosed with AD, mild cognitive impairment (MCI) and age-matched controls. Methods: Metabolic phenotyping was applied to both urine (n = 560) and serum (n = 354) from the European-wide AddNeuroMed/Dementia Case Register (DCR) biobank repositories. Metabolite data were subsequently interrogated for inter-group differences; influence of gender and age; comparisons between two subgroups of MCI - versus those who remained cognitively stable at follow-up visits (sMCI); and those who underwent further cognitive decline (cMCI); and the impact of selective serotonin reuptake inhibitor (SSRI) medication on metabolite concentrations. Results: Results revealed significantly lower metabolite concentrations of tryptophan pathway metabolites in the AD group: serotonin (urine, serum), 5-hydroxyindoleacetic acid (urine), kynurenine (serum), kynurenic acid (urine), tryptophan (urine, serum), xanthurenic acid (urine, serum), and kynurenine/tryptophan ratio (urine). For each listed metabolite, a decreasing trend in concentrations was observed in-line with clinical diagnosis: control > MCI > AD. There were no significant differences in the two MCI subgroups whilst SSRI medication status influenced observations in serum, but not urine. Conclusions: Urine and serum serotonin concentrations were found to be significantly lower in AD compared with controls, suggesting the bioavailability of the neurotransmitter may be altered in the disease. A significant increase in the kynurenine/tryptophan ratio suggests that this may be a result of a shift to the kynurenine metabolic route due to increased IDO activity, potentially as a result of systemic inflammation. Modulation of the pathways could help improve serotonin bioavailability and signalling in AD patients
    corecore