13 research outputs found

    Radiative feedbacks from stochastic variability in surface temperature and radiative imbalance

    No full text
    Estimates of radiative feedbacks obtained by regressing fluctuations in top-of-atmosphere (TOA) energy imbalance and surface temperature depend critically on assumptions about the nature of the stochastic forcing and on the sampling interval. Here we develop an energy-balance framework that allows us to model the different contributions of stochastic atmospheric and oceanic forcing on feed- back estimates. The contribution of different forcing components are parsed based on their impacts on the covariance structure of temperature and TOA energy fluxes, and the framework is validated in a hierarchy of climate model simulations that span a range of oceanic configurations and reproduce the key features seen in observations. We find that at least three distinct forcing sources, feedbacks, and time scales are needed to explain the full covariance structure. Atmospheric and oceanic forc- ings drive modes of variability with distinct relationships between near-surface air temperature and TOA radiation, and the net regression-based feedback estimate is found to be a weighted average of the distinct feedbacks associated with each mode. Moreover, the estimated feedback depends on whether surface temperature and TOA energy fluxes are sampled at monthly or annual timescales. The results suggest that regression-based feedback estimates reflect contributions from a combina- tion of stochastic forcings, and should not be interpreted as providing an estimate of the radiative feedback governing the climate response to greenhouse gas forcing

    Strong remote control of future equatorial warming by off-equatorial forcing

    No full text
    The tropical climate response to GHG forcing is spatially non-uniform1,2,3. Even though enhanced equatorial and eastern Pacific warming is simulated by most climate models, the underlying mechanisms???including the relative roles of atmospheric and oceanic feedbacks???remain debated. Here, we use a climate model with idealized CO2-radiative forcing patterns to show that off-equatorial radiative forcing and corresponding coupled circulation/cloud adjustments are responsible for much of equatorial warming in response to global CO2 forcing. For equatorial forcing, the atmosphere responds by enhancing atmospheric heat export to the extra-tropics, an associated strengthening of the ascending Hadley circulation branch and strong negative equatorial cloud feedbacks. These processes together greatly dampen equatorial surface warming. Intensification of the oceanic subtropical cells and increased cold subsurface water upwelling in the eastern tropical Pacific provide an additional negative feedback for surface temperatures. In contrast, applying off-equatorial forcing, the atmosphere responds by exporting less heat from the tropics, Hadley circulation weakening and weaker negative equatorial cloud feedbacks, while the subtropical cells slow down in the ocean. Our results demonstrate a delicate balance in the coupled climate system between remote circulation adjustments and regional feedbacks that create the patterns of future climate change

    Sea-surface temperature pattern effects have slowed global warming and biased warming-based constraints on climate sensitivity

    No full text
    The observed rate of global warming since the 1970s has been proposed as a strong constraint on equilibrium climate sensitivity (ECS) and transient climate response (TCR)-key metrics of the global climate response to greenhouse-gas forcing. Using CMIP5/6 models, we show that the inter-model relationship between warming and these climate sensitivity metrics (the basis for the constraint) arises from a similarity in transient and equilibrium warming patterns within the models, producing an effective climate sensitivity (EffCS) governing recent warming that is comparable to the value of ECS governing long-term warming under CO[Formula: see text] forcing. However, CMIP5/6 historical simulations do not reproduce observed warming patterns. When driven by observed patterns, even high ECS models produce low EffCS values consistent with the observed global warming rate. The inability of CMIP5/6 models to reproduce observed warming patterns thus results in a bias in the modeled relationship between recent global warming and climate sensitivity. Correcting for this bias means that observed warming is consistent with wide ranges of ECS and TCR extending to higher values than previously recognized. These findings are corroborated by energy balance model simulations and coupled model (CESM1-CAM5) simulations that better replicate observed patterns via tropospheric wind nudging or Antarctic meltwater fluxes. Because CMIP5/6 models fail to simulate observed warming patterns, proposed warming-based constraints on ECS, TCR, and projected global warming are biased low. The results reinforce recent findings that the unique pattern of observed warming has slowed global-mean warming over recent decades and that how the pattern will evolve in the future represents a major source of uncertainty in climate projections.ISSN:0027-8424ISSN:1091-649
    corecore