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Identification and interpretation of non-normality in

atmospheric time series

Cristian Proistosescul, Andrew Rhines2, Peter Huybers.1

Non-normal characteristics of geophysical time series are
important determinants of extreme events and may pro-
vide insight into the underlying dynamics of a system. The
structure of non-normality in winter temperature from ra-
diosonde time-series is examined through the use of lin-
ear filtering. Filtering either low or high frequencies gen-
erally suppresses what is otherwise statistically significant
non-normal variability in temperature. Admitted frequen-
cies that maximize skewness and kurtosis are, however, dis-
tinct from one another. This structure of non-normality is
partly attributable to geometric relations between filtering
and the appearance of skewness, kurtosis, and higher order
moments in time series data. Other aspects of filtered skew-
ness and kurtosis appear more specifically attributable to
the presence of non-normal temperature variations at the
highest resolved frequencies in the presence of atmospheric
memory. A non-normal autoregressive model and a multi-
plicative noise model are both consistent with the observed
frequency structure of non-normality.

1. Introduction

Departures from normality in temperature have impor-
tant implications for the frequency of extreme events [Ruff
and Neelin, 2012], and discerning the statistical characteris-
tics of non-normality can give insight into relevant physical
processes. Sardeshmukh and Sura [2009] demonstrate that
the appearance of non-normal characteristics of atmospheric
temperature data can be explained as arising from the ef-
fects of multiplicative noise acting at the fastest resolved
time scales of their model. [Schneider et al., 2015], however,
have demonstrated that temperatures filtered to the canoni-
cal synoptic time scales appears normal, whereas deviations
from normality are apparent when including variability at
time scales longer than 15 days.

These interpretations appear to conflict with one another,
except that it becomes relevant to distinguish tendencies to-
ward normality in filtered data that are indicative of physi-
cal processes from those introduced generically through the
filtering of time series data. Rosenblatt [1961] noted that
“[i]t appears to be part of the engineering folklore that a
narrow band-pass filter applied to a stationary random in-
put yields an output that is approximately normally dis-
tributed.” Such a tendency for filtering to alter the ap-
pearance of normality has been noted for other signals [e.g.,
Rozanov, 1961; Mallows, 1967; Papoulis, 1972], to include
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Donohoe and Battisti [2009] describing how the asymme-
try in the distribution of synoptic cyclones and anticyclones
depends on the choice of temporal or spatial filtering tech-
niques.

An overall tendency for filtering to make time series
data appear more normal can be explained from a Fourier
perspective, whereby filtering nullifies interactions between
frequencies that are necessary for representing non-normal
structure [Kotulski and Sobczyk, 1981; Garth and Bresler,
1997]. There remains the possibility, however, that distinct
structure in the non-normality of filtered records can provide
physical insight. In the following we examine radiosonde
time series, first demonstrating statistically significant non-
normality, then analytically describing how this non-normal
structure can be expected to decay upon filtering, and fi-
nally describing more nuanced structures associated with
non-normality using two simple numerical models.

2. Radiosonde Temperature Data

As an initial example, Fig. 1 shows the distribution of
wintertime radiosonde temperature data. All radiosonde
data were obtained from the Integrated Global Radiosonde
Archive [Durre et al., 2006] and are subset to only 12:00
GMT soundings at 850 millibars. Time periods are cho-
sen for each station to provide a long record while mini-
mizing the effect of missing values. Only 2% of samples
are missing during the 1958-2009 interval used for the Bar-
row, Alaska station shown in Fig. 1), and these are in-
filled by linear interpolation. We remove the annual cycle
and its first two harmonics with a Fourier notch filter, how-
ever seasonal results are similar when the annual cycle is
retained (supplemental Fig. S1). The sample distribution
of the Barrow data involves a positive skew and is found
to be significantly non-normal (p < 0.05). Significance is
assessed using a Kolmogorov-Smirnov (KS) test [Smirnov,
1939], where the largest deviation between the sample cu-
mulative distribution and that of a normal distribution is
evaluated. Controlling for autocorrelation by sampling only
every five days still leads to rejection of the null of normality
at p < 0.05, and similar results to these are obtained when
using a Lilliefors test of normality.

This example is consistent with a more comprehensive
study [Perron and Sura, 2013] that found statistically sig-
nificant deviations from non-normality in daily data for nine
atmospheric variables, including temperature, in reanalyses
data. Surface temperature from the U.S. Global Histori-
cal Climatology Network (GHCN) has also been shown to
exhibit significant non-normality [Huybers et al., 2014].

The radiosonde data become more consistent with a nor-
mal distribution upon filtering. For example, filtering to
only retain synoptic scale anomalies at 1/3-1/15 day ™" fre-
quencies gives results that are consistent with a normal dis-
tribution (p = 0.14). Filtering is performed using a sim-
ple top hat filter whereby Fourier components outside the
pass-band are set to zero. This approach is not optimal
from the perspective of suppressing Gibbs phenomena but
is amenable to later analytic calculations. Furthermore, no
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appreciable differences are obtained when using more so-
phisticated filters, such as a forward-backward pass with a
Butterworth filter.

An adjusted version of the KS test is used to assess non-
normality in filtered records, accounting for the fact that
band-pass filtering decreases the effective sample size of the
data. In particular, the critical value for rejecting the null
hypothesis of normality is computed using an effective sam-
ple size equal to the total number of retained Fourier co-
efficients. Although this adjustment is important for com-
pleteness, inability to reject normality is not merely because
of the reduction in degrees of freedom—in this case, simi-
lar results are obtained when assuming that all samples are
independent.

Note that rejection of normality can appear either from
features of sub-seasonal variability or interannual variability.
For instance, normal variability that is subject an interan-
nual trend in the mean, amongst other variations, would give
the appearance of non-normality (see [Huybers et al., 2014]
for a more complete discussion). Here we focus on only the
seasonal temperature distribution, sub-selecting for the De-
cember through February winter months, and normalizing
each seasonal realization to a mean of zero and variance of
one.

The initial example (Fig. 1) can be generalized (Fig. 2)
to show how non-normal components vary according to fil-
tering. Specifically, we examine how skewness and excess
kurtosis of four long and nearly complete records from Pitts-
burgh (USA), Medford (USA), Novgorod (Russia), and Sap-
poro (Japan) change as a function of high and low cut-off
frequencies specified for filtering. A general pattern holds
wherein skewness and kurtosis diminish with increasingly
narrow filter bandwidths, but more nuanced structure is also
present across the radiosonde time series.

All radiosonde data show skewness that is positive when
the lowest frequencies of 1/90 days™' are admitted but
which diminishes to near zero once low-frequency cut-offs
of 1/7 days™! or higher are specified. Relative to the low-
frequency cut-off, changing the high-frequency cut-off has
only a weak influence on skewness, except for the presence
of skewness extending out toward a frequency band near
1/3-1/4 days™'. In contrast to skewness, excess kurtosis is
negative when admitting the lowest frequencies and is maxi-
mized when passing frequencies between 1/5 to 1/2 days™',
roughly encompassing synoptic timescales. Excess kurtosis
also becomes strongly negative when the pass band becomes
extremely narrow.

Significance of non-normality in the radiosonde time se-
ries is evaluated for each filter combination using the pre-
viously described adjusted KS test. With the exception of
Pittsburgh, each record shows statistically significant non-
normality (p < 0.05) in those regions having the greatest
magnitudes of skewness and excess kurtosis. Higher or-
der moments are also present but decay more quickly un-
der filtering and make only minor contributions to overall
non-normality. In the following we explain the structure
in skewness and kurtosis through the use of analytical and
numerical models.

3. Analytical model of non-normality

The tendency of a time series to become more normally
distributed after filtering can be understood through the use
of its Fourier transform and higher order spectra [Brillinger,
1965; Garth and Bresler, 1997]. The power spectrum, bis-
pectrum and trispectrum of a process x(t) can be defined in
terms of the Fourier Transform Z(f) as,

: i‘*(fl)7
B(f1, f2) = &(f1)-
T(f11f27f3) = ‘%(fl) !

(1a)
&(f2) - 27 (f1r + fo), (1b)
&(f2) - 2(f3) - 2" (fr + f2 + f3). (lc)

NON-NORMALITY AND FILTERING

Higher order spectra follow a relation similar to Parse-
val’s theorem for the power spectrum, wherein the surface
integral over the bispectrum is related to skewness, S, and
the volume integral over the trispectrum is related to excess
kurtosis, K,

o [ BUL L) - dfs - dfs
(f P(f2) - dfr)*"*
K- JT(f1, f2, f3) - dfs - df> - dfs
(f P(f)-df)"”

Deviations from a normal distribution are encoded in in-
teractions between different frequency bands in the Fourier
representation of time series and will be modified by filter-
ing. The specific effects of filtering z(t) upon skewness and
kurtosis can be obtained by replacing &(f) with a filtered
version, §(f) = h(f) - 2(f), in Eqs. 1-2. Excluding a fre-
quency f; also eliminates all interacting frequencies pairs,
such that the unfiltered area of the bispectrum generally
diminishes more rapidly than that of the power spectrum.
For example, a low-pass filter that retains only a fraction
B of unfiltered frequencies will lead to a bispectrum with
only 34%/4 of its area being unfiltered for 8 < 2/3. A ge-
ometric depiction of the effects of band-pass filtering upon
the bispectrum is given in Fig. 3, and a similar depiction
for the trispectrum is given in the supplementary material
(Fig. S2). Although the filtering patterns are visually sim-
ple, integrals over higher order spectral volumes can become
quite complicated [Biieler et al., 2000].

Fig. 4 shows skewness and excess kurtosis as a function
of filtered cut-off frequencies. There is excellent agreement
between our analytically computed values and that obtained
from a random time series containing 107 realizations from
a Pearson distribution. The Pearson distribution is cho-
sen because it permits for directly prescribing skewness and
kurtosis, although the results are unchanged if the synthetic
data is drawn from a range of other distributions such as
beta, gamma or chi-squared. When the time series is re-
duced to 10° points, the match becomes more noisy, with
the implication that the finite radiosonde time series we an-
alyze can be expected to have variable skewness and kurtosis
structure even if the underlying statistical distributions are
identical.

The analytical results describe some of the main features
of filtered skewness observed in the radiosonde data (Fig.4a).
Filtering low frequencies more rapidly decreases skewness
than filtering high frequencies because, as depicted in Fig. 3,
the sum of low-frequency pairs occupies more area of the
bispectrum not already excluded by filtering a single mem-
ber of the pair than does the sum of high-frequency pairs.
The analytical results also explain a lobe of high skewness
that extend out towards frequencies in the vicinity of half
the Nyquist frequency, or in the case of the daily sampled
radiosonde time series, 1/4 days™'. This lobe is again a con-
sequence of asymmetries in how filtering certain frequencies
also excludes energy at interaction frequencies (see Eq. 1).

In contrast with skewness, correspondence between the
kurtosis obtained from our analytical results and the ra-
diosonde observations is poor. The analytical results show
contours of kurtosis that align with contours of constant

(2a)

(2b)
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filter bandwidth (Fig 4b), whereas the data show maxi-
mum kurtosis when filtering everything but frequencies cor-
responding to synoptic timescales. Negative values of excess
kurtosis observed when filtering out all but a small number
of frequencies (the diagonals in Fig. 2) reflects the fact that
the excess kurtosis of a sine wave is -1.5. For the case of
a normal process, wherein the distribution of Fourier coef-
ficients is i.i.d., it can be shown that the expected sample
excess kurtosis converges to the true process excess Kurtosis
of zero as K o —3/2n, where n is the number of neighbor-
ing frequencies retained in the Fourier spectrum (see Ap-
pendix). Continuous frequency resolution in the analytical
results means that they do not display this sinusoidal limit.
The remainder of the mismatch between the analytical and
observed kurtosis, however, points to substantive differences
between the analytical model and actual temperature vari-
ability.

4. Numerical models of non-normality

An obvious deficiency in the foregoing analytical results is
the presumption of independent realizations. Spectral esti-
mates of radiosonde temperature (Figs. 1, 2) have red power
spectra, with increasing energy toward lower frequencies,
that can be understood as arising from integrating synoptic
weather anomalies [Hasselmann, 1976]. This memory in a
system increases the contribution of low frequency variabil-
ity relative to high frequencies and can be described as an
autoregressive order one process,

z(t+1) = px(t) + (1), ®3)
where 7 represents independent samples from a Pearson
distribution. Specifying p = 0 would give the same kurtosis
structure as discussed with respect to Fig. 4, at least up to
issues of random variations associated with finite samples;
setting p = 0.5 does not appreciably change this result; but
setting p = 0.9 leads to a kurtosis structure with a max-
imum at synoptic periods, in agreement with observations
(Fig. 5). The reduction in kurtosis when retaining the low-
est frequencies can be understood from the effects of the
central limit theorem tending to make values normal when
multiple independent realizations are summed together, and
the fact that these sums will tend to have greater variance
and, thereby, greater control of the distribution than higher
frequency fluctuations.
Finally, we consider a a discretized version of the model
presented by Sardeshmukh and Sura [2009] that involves cor-
related additive and multiplicative (CAM) noise,

#(t+1) = pr(t) + b (6) + (Ba(t) + g (t) — 5Bg. (1)

Variables 71 and 72 represent independent realizations of
a standard normal distribution. The first term represents
the integrative tendency of the process, the second and third
term respectively represent the normal and non-normal in-
novations, and the last term ensures the process is station-
ary. Non-normality is introduced by a state-dependent and
asymmetric amplification of the normal forcing, n2. Spec-
ifying p = 0.9,b = 0.1, F = 0.2, and g = 0.1 gives output
with a similar structure of skewness and kurtosis to the ra-
diosonde data (Fig. 5).

5. Further discussion and conclusions

Both the non-normal autoregressive model and multi-
plicative noise models fit the observations through inher-
iting non-normality at the most highly resolved frequencies.
This results can be reconciled with Schneider et al. [2015]
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finding normal variability at synoptic time scales but non-
normal variability at longer time scales through considering
the effects of band-pass filtering. Filtering to 1/3 — 1/15
days™! synoptic frequencies generally leads to insignificant
deviations from normality in the radiosonde data (Fig. 2).
Indeed, both our analytical (Fig. 4) and numerical (Fig. 5)
results indicate that skewness and kurtosis are reduced to
about half their peak values when filtering to these fre-
quencies. In contrast, filtering to 1/2 — 1/10 days™' gen-
erally results in significant non-normality (Fig. 2) for the
radiosonde data, emphasizing how otherwise seemingly ar-
bitrary choices in cut-off frequencies can substantially alter
statistical results. The findings of non-normal variability
for a 1/25-1/35 day ™' pass-band results from the discrete
frequency basis only retaining a small number of non-zero
frequency terms, and, thus, tending towards a distribution
determined by the sinusoidal Fourier basis.

For completeness, we also verify that applying the afore-
mentioned filters to the five ERA-Interim 850hPa grid boxes
used by Schneider et al. [2015] leads to results consistent
with our radiosonde findings. These findings indicate that
higher order moments should not be neglected when con-
sidering changes in daily extremes, though they do not al-
ter the main conclusions regarding the physical mechanisms
for change in mid-latitude variability that Schneider et al.
[2015] present.

Despite the consistency between our models and obser-
vations, it remains unclear whether the highest resolved
frequency of 1/2 day ™' is near that of the process giving
rise to the non-normal distribution. Mechanisms generating
non-normality will depend on multiple location- and scale-
specific factors. It will stem in part from large-scale dynam-
ics that plausibly operate at the resolved frequencies, and
in part from small-scale non-normal perturbations, such as
those associated with atmospheric turbulence that display
non-normality at much high frequencies [Chu et al., 1996].
In future work, it would be useful to examine higher resolu-
tion temperature records with respect to their non-normal
contribution.

The frequency structure associated with skewness and
kurtosis are, of course, not the only metrics by which to
characterize the non-normality associated with a time se-
ries. The relation between skewness and kurtosis in sam-
ples of both atmospheric and oceanic variability [Sura and
Sardeshmukh, 2008; Sardeshmukh and Sura, 2009] has been
shown to have a tighter clustering along a parabola than
would be expected from purely mathematical considerations
[Pearson, 1916; Rohatgi and Székely, 1989]. CAM noise can
reproduce this parabolic clustering, although a number of
other processes may also give rise to similar relations [Sat-
tin et al., 2009].

Design of further tests for better distinguishing between
different classes of non-normal generating processes seems
useful. Omne promising technique in this regard is pre-
whitening of a record in order to remove integrative ten-
dencies toward normality. A similar approach is taken by
Director and Bornn [2015] for correcting for the effects of
spatial averaging on higher order moments. Further possibil-
ities include directly testing for multiplicative relationships,
examining the extent to which spectral or higher order spec-
tral features suggest the presence of aliasing, and developing
approaches for handling non-stationarity associated with di-
urnal, seasonal, or longer timescale changes in distributional
properties.

Appendix A: Influence of discrete frequency
space

Filters can cause the resulting signal to tend toward that
of a sinusoid when the pass-band only admits a small num-
ber of frequencies. We derive a scaling relationship to quan-
tify what is meant by a small number. First, consider the
distribution of a sinusoid with amplitude a,



1
ray/T (D2
The odd moments vanish on account of symmetry but
excess Kurtosis is —3/2. The characteristic function of
Eq. Al equals Jy (as), i.e. the zero-th Bessel function of
the first kind scaled by amplitude a, and the characteristic
function of the distribution of a sum of n such components
is the product of their individual characteristic functions,
T, Jo (a;5).
Assuming all a; equal unity and uniformly distributed
phases, the k-th moment becomes,

(A1)

k n
px = B[Y*] = (4)’“5? (H Jo (s)> (A2)

Jj=1

s=0

The fourth moment is solved for by setting k& = 4, ex-
panding using the chain rule while making use of identities
relating derivatives of Bessel functions of the first kind of dif-
ferent orders, and evaluating at s = 0. Variance is similarly
computed by setting k = 2. Excess kurtosis is then,

L

o 2n

which is within 5% of a normal distribution once ten fre-

quencies are included. There will be phase dependence be-

tween different frequencies for non-normal distributions, and

synthetic tests confirm that convergence is generally weaker
under these conditions.

(A3)

Appendix B: Analytical and numerical

filtering results

The bispectrum, Br, and trispectrum, T, of the filtered
time-series are

Br(fi, f2) = Ha2(f1, f2) - B(f1, f2),
Tr(f1, f2, f3) = Hs(f1, f2, f3) - T'(f1, f2),

(Bla)
(B1b)

where Hy and Hs are defined in terms of the filter h(f) as,

Ha(f1, f2) = h(f1) - h(f2) - b (fr + f2), (B2a)

Hs(f1, f2, f3) = R (f1) - h (f2) - h (f3) - B (fr + fo + f3).
(B2b)

_ Since 2(f) is periodic with period 2fn, the top-hat filter
h(f) is defined accordingly:

fl(f)={é

with fr, fu the low- and high-frequency cutoffs. Assuming
B(f1, f2) = 1 and T'(f1, f2, f3) = 1, it is possible to derive
estimates for skewness and kurtosis.

For the bispectrum, we can write down analytical val-
ues for the relative skewness of the filtered data. (B3)
defines seven different regions in the [fr, fu] € {[0, fn] X
[0, fN]|fr < fu} space of possible pass-bands, each with a
different expression for the total area of the admitted bispec-
trum. The regions are depicted in Fig.4a, as are analytical

Jfo < (f + fv mod 2fn) — fv < fu

,otherwise,

(B3)
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estimates of the filtered skewness. The lines a-e limiting the
different regions are

a :fH = 2fL (B4a)
b:fu=2/3,fL <2/3 (B4b)
CZfL :2/3,fH 22/3 (B4C)
d:fu =2-fr (B4d)
e ifH =1- fL/2, (B4e)
while relative skewness in the six non-zero regions is
_(2-3fn)?
1 A = [1)? (B5a)
=24 3fu —3ff/A+3fL —3fufL —3fi/4
2: (i = )7 (B5b)
1—3fu +3fir —3fufr +3f7
3: G — )37 (B5c¢)
3(fu —2f1)?
4 AT (B5d)
(2-3f)°
P 1) (5e)
6.2+ fu(3—6fr) +3f1 +9/2/4 (B56)

(fu — fr)*/?

Panels 4b,c show estimates of skewness and kurtosis ob-
tained by numerical integration. For each [f, f#] pair span-
ning a set of 50 x 50 possible combinations, the skewness
and kurtosis of the filtered data are computed by integrat-
ing equations (B1). H and Hs are computed via (B2,B3) on
a discrete grid of 1000 x 1000 and 100 x 100 x 100 frequency
bins respectively. The numerically integrated and analyti-
cal results agree within the expected uncertainty associated
with the integration.
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Figure 1. Filtering of radiosonde temperature time-
series and normality. Top: Power spectrum of a ra-
diosonde time series of temperature at 850 mbar from
Barrow, AK. The annual cycle is removed by notch-
filtering the annual frequency and its first two harmonics.
The time-series is then progressively filtered using a top-
hat band-pass filter. The admitted frequency band for
each filter is depicted by color bars indicating frequen-
cies of 1/3-1/7 days ~! (blue), 1/3-1/40 days™* (orange),
and 1/3-1/400 days™' (yellow). Bottom: The probabil-
ity density function (PDF) and cumulative density func-
tion (CDF) are depicted for winter (DJF) temperatures
for the full data (solid black line), the filtered time-series
(solid colored lines),and a standardized normal distribu-
tion (dashed line).
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Figure 2. Effects of filtering on skewness (Top) and
excess kurtosis (Middle) of 850 mbar DJF temperature
from radiosonde stations for the full range of pass-bands.
Axes denote pass band limits. Each season is treated as
an independent ensemble member, standardized to zero
mean and unit variance. Values of sample S and K aver-
aged are over all seasons. Lines parallel to the diagonal
have equal bandwidth for the pass-band, with the width
of the pass-band increasing further away from the diago-
nal. Points below the solid black lines cannot be distin-
guished from samples drawn from a normal distribution
under a Kolmogorov Smirnov (KS) test, at 95% confi-
dence level, with degrees of freedom adjusted to match
the number of Fourier coefficients in the filtered data.
Markers denote choices of filter pass-band discussed in
the text. Bottom: spectral estimates of each individual
season (black) and the mean spectrum (red). Note the
logarithmic frequency axis for spectral estimates.
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Figure 3. Effects of filtering on the bispectrum. Fre-
quency axes are normalized relative to the Nyqvist fre-
quency (N), and the solid color depicts the part of the
bispectrum respectively that is allowed to pass under
a band-pass filter. Rows from top to bottom indicate
greater filtering of high frequencies, and columns from
left to right are greater filtering of low frequencies. Note
that both negative and positive frequencies contribute to
the bispectrum.
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Figure 4. Skewness and excess kurtosis under band-
pass filtering, relative to unfiltered values. Axes denote
pass band limits, relative to the Nyqvist frequency. Gray
shaded area denotes values of skewness of exactly zero.
Top: Analytical computation of skewness from a filtered
isotropic bispectrum. Middle: Numerical computation
of a filtered isotropic bispectrum, and synthetic estima-
tions based on realizations of an i.i.d. process. Bottom:
Same as middle, but for excess kurtosis. Details of the
analytical and numerical estimations are given in the ap-
pendix.
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Figure 5. Same as Fig. 2, but for synthetic data. From
left to right, columns present results models that are
i.i.d., autoregressive order one with parameters of p = 0.5
and p = 0.9 (Eq. 3), and correlated additive and cumu-
lative noise (Eq. 4). The i.i.d. and autoregressive mod-
els are driving by non-normal realization from a Pearson
distribution. For each model, 50 independent ensemble
members of length 90 are generated, with each member
representing a season. Plotted results are the average af-
ter analyzing each season, except for the bottom panels
which also shows individual realizations in black.
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