397 research outputs found

    A lattice Boltzmann study of phase separation in liquid-vapor systems with gravity

    Full text link
    Phase separation of a two-dimensional van der Waals fluid subject to a gravitational force is studied by numerical simulations based on lattice Boltzmann methods (LBM) implemented with a finite difference scheme. A growth exponent α=1\alpha=1 is measured in the direction of the external force.Comment: To appear in Communications in Computational Physics (CiCP

    ENERGY CONSUMPTION OF MOBILE PHONES

    Get PDF
    Battery consumption in mobile applications development is a very important aspect and has to be considered by all the developers in their applications. This study will present an analysis of different relevant concepts and parameters that may have an impact on energy consumption of Windows Phone applications. This operating system was chosen because limited research related thereto has been conducted, even though there are related studies for Android and iOS operating systems. Furthermore, another reason is the increasing number of Windows Phone users. The objective of this research is to categorise the energy consumption parameters (e.g. use of one thread or several threads for the same output). The result for each group of experiments will be analysed and a rule will be derived. The set of derived rules will serve as a guide for developers who intend to develop energy efficient Windows Phone applications. For each experiment, one application is created for each concept and the results are presented in two ways; a table and a chart. The table presents the duration of the experiment, the battery consumed in the experiment, the expected battery lifetime, and the energy consumption, while the charts display the energy distribution based on the main threads: UI thread, application thread, and network thread

    A formal method for rule analysis and validation in distributed data aggregation service

    Get PDF
    The usage of Cloud Serviced has increased rapidly in the last years. Data management systems, behind any Cloud Service, are a major concern when it comes to scalability, flexibility and reliability due to being implemented in a distributed way. A Distributed Data Aggregation Service relying on a storage system meets these demands and serves as a repository back-end for complex analysis and automatic mining of any type of data. In this paper we continue our previous work on data management in Cloud storage. We present a formal approach to express retrieval and aggregation rules with a compact, yet powerful tool called Rule Markup Language. Our extended solution proposes a standard form to schemes and uses the tool to match the rules to the XML form of the structured data in order to obtain the unstructured entries from BlobSeer data storage system. This allows the Distributed Data Aggregation Service (DDAS) to bypass several steps when processing a retrieval request. Our new architecture is more loosely-coupled with a separate module, the new tool, used fo

    Meta-scheduling Issues in Interoperable HPCs, Grids and Clouds

    Get PDF
    Over the last years, interoperability among resources has been emerged as one of the most challenging research topics. However, the commonality of the complexity of the architectures (e.g., heterogeneity) and the targets that each computational paradigm including HPC, grids and clouds aims to achieve (e.g., flexibility) remain the same. This is to efficiently orchestrate resources in a distributed computing fashion by bridging the gap among local and remote participants. Initially, this is closely related with the scheduling concept which is one of the most important issues for designing a cooperative resource management system, especially in large scale settings such as in grids and clouds. Within this context, meta-scheduling offers additional functionalities in the area of interoperable resource management, this is because of its great agility to handle sudden variations and dynamic situations in user demands. Accordingly, the case of inter-infrastructures, including InterCloud, entitle that the decentralised meta-scheduling scheme overcome issues like consolidated administration management, bottleneck and local information exposition. In this work, we detail the fundamental issues for developing an effective interoperable meta-scheduler for e-infrastructures in general and InterCloud in particular. Finally, we describe a simulation and experimental configuration based on real grid workload traces to demonstrate the interoperable setting as well as provide experimental results as part of a strategic plan for integrating future meta-schedulers

    Nanocrystalline Cellulose as Effect Pigment in Clear Coatings for Wood

    Get PDF
    Nanocrystalline cellulose (CNC) is a renewable material with high potential in many applications. Due to its unique self-assembly and optical properties, CNC tends to behave as an iridescent pigment. The aim of this research was to explore the potential of CNC as an effect pigment in wood coatings. CNC-based coatings were developed from an aqueous CNC solution, a UV-curable water-based clear coating formulation, several colorants, and specialized additives. In this paper, the morphology of the resulting CNC films was investigated through circular dichroism and optical microscopy under polarized light. The effect of the CNC surface charge changes was monitored through zeta potential measurements. Color changes, or travel, and flop index were used to assess the iridescent effect of the coatings containing CNC. The experimental wood coatings contained CNC showed that the enhancement of the iridescent effect depends on the distribution and alignment of the CNC rod-like particles in order to generate the right pitch in the helical structure and their interaction with the polymer matrix as well with the additives. In conclusion, CNC could be successfully used as effect pigment in finishing systems, which can enhance the attractiveness and bring out the special grain of various types of wood.ISSN:2090-874

    Comparison of J-r test techniques under gaseous hydrogen environment

    Get PDF
    Please click Additional Files below to see the full abstrac

    Dynamic modelling and nonlinear model predictive control of a fluid catalytic cracking unit

    Get PDF
    The paper presents the application of two nonlinear model predictive control (NMPC) approaches: quasi-infinite-horizon nonlinear MPC (QIHNMPC) and moving horizon estimator nonlinear MPC (MHE-NMPC) to the Fluid Catalytic Cracking Unit (FCCU). A complex dynamic model of the reactor–regenerator–fractionator system is developed and subsequently used in the controller. The novelty of the model consists in that besides the complex dynamics of the reactor–regenerator system, it also includes the dynamic model of the fractionator, as well as a five lumps kinetic model for the riser. Tight control is achieved using the QIHNMPC approach. The MHE-NMPC considers important features of a real-time control algorithm, resulting in a framework for practical NMPC implementation, such as: state and parameter estimation and efficient solution of the optimisation problem. In the NMPC approach, only measurements available in practice are considered, whereas the rest of the states are estimated together with uncertain model parameters, via MHE technique. Using an efficient numerical implementation based on the multiple shooting algorithm real-time feasibility of the approach is achieved. The incentives of the proposed approaches are assessed on the simulated industrial FCCU

    RESEARCH ON INDUSTRIALIZATION IN OBTAINING BIOFERTILIZERS AND BIOFUELS FROM SEAWEED

    Get PDF
    Obtaining biofertilizers and biofuels from organic products has been of great interest in recent years and is an important step in combating pests and reducing soil chemicals. Seaweed is an great agent in reduction pollution, in the textile industry, in the manufacture of pulp and paper, in distillation, in petrochemistry, metallurgy, chemistry, food, pharmaceuticals, as well as in agriculture as biofertilizers.This article presents stages of research worldwide on the potential of industrialization in obtaining biofuels and biofertilizers from seaweed.The paper highlights technologies and processing methods in obtaining future biofertilizers and biofuels with a low impact on new climate change felt strongly on agriculture

    Metformin plus PIAF combination chemotherapy for hepatocellular carcinoma

    No full text
    Objectives: Metformin, the most used oral antidiabetic drug for the treatment of type 2 diabetus mellitus, has proved encouraging results when used in the treatment of various types of cancer such as triple-negative breast cancer. Despite compelling evidence of a role of metformin as an anticancer drug, the mechanisms by which metformin exerts its oncostatic actions are not fully understood yet. Therefore, we tried to bring new insights by analyzing the anti-neoplastic effect of metformin for hepatocellular carcinoma-derived stem-like cells treated with conventional combination chemotherapy. Methods: Cancer stem-like cells previusly isolated from a hepatocellular carcinoma biopsy were treated with metformin, PIAF chemotherapy regimen and the combination of these two protocols. Measurements of lipid peroxidation, reduced glutathione, fluorescein diacetate and proliferation rates were determined, apart from the autophagy assay and apoptosis determination by chip flow cytometry. Results: Metformin alone and especially metformin in association with PIAF increases oxidative stress within the cells by increasing the levels of lipid peroxids as well as decreasing the levels of reduced glutathione. The MTT cell proliferation assay showed decreased prolife­ration rates for the arm treated with metformin and with the combination of drugs in comparison with the control arm, proving high correlation with the oxidative stress results. The autophagy assay and determination of apoptosis by chip flow cytometry confirmed the results obtained in the previous assays. Conclusion: Metformin could be used in chemotherapy treatments to induce reactive oxygen species and increase the cytostatics effects within the tumor cell. Still, further experiments must be carried out on murine models before we can move on and use this drugs in the adjuvant setting for unresectable primary liver cancer

    Finite difference lattice Boltzmann model with flux limiters for liquid-vapor systems

    Full text link
    In this paper we apply a finite difference lattice Boltzmann model to study the phase separation in a two-dimensional liquid-vapor system. Spurious numerical effects in macroscopic equations are discussed and an appropriate numerical scheme involving flux limiter techniques is proposed to minimize them and guarantee a better numerical stability at very low viscosity. The phase separation kinetics is investigated and we find evidence of two different growth regimes depending on the value of the fluid viscosity as well as on the liquid-vapor ratio.Comment: 10 pages, 10 figures, to be published in Phys. Rev.
    corecore