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Abstract  

The paper presents the application of two nonlinear model predictive control (NMPC) approaches: 

quasi-infinite horizon nonlinear MPC (QIHNMPC) and moving horizon estimator nonlinear MPC (MHE-

NMPC) to the FCCU. A complex dynamic model of the reactor-regenerator-fractionator system is developed and 

subsequently used in the controller. The novelty of the model consists in that besides the complex dynamics of 

the reactor-regenerator system, it also includes the dynamic model of the fractionator, as well as a five lumps 

kinetic model for the riser. Tight control is achieved using the QIHNMPC NMPC approach. The MHE-NMPC 

considers important features of a real-time control algorithm, resulting in a framework for practical NMPC 

implementation, such as: state and parameter estimation and efficient solution of the optimisation problem. In the 

NMPC approach, only measurements available in practice are considered, whereas the rest of the states are 

estimated together with uncertain model parameters, via MHE technique. Using an efficient numerical 

implementation based on the multiple shooting algorithm real-time feasibility of the approach is achieved. The 

incentives of the proposed approaches are assessed on the simulated industrial FCCU. 

Keywords: catalytic cracking, dynamic modelling, nonlinear model predictive control, moving horizon 

estimator, real-time control 
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1. Introduction  

Fluid Catalytic Cracking Unit (FCCU) is one of the most important processes in a refinery, 

because its main product is the high quality gasoline. This process converts high molecular-weight gas 

oils into significantly more valuable, lighter hydrocarbon products. The process is multivariable, 

strongly nonlinear, highly interactive, and is subject to many operational, safety and environmental 

constraints, posing challenging control problems. The competitive nature of the petrochemical 

industries drives the constant technological development of FCC processes, with the clear economic 

objective of improving productivity, while maintaining safety and environmental regulations. Due to 

its complexity, the modelling and control of FCCU raises important challenges (McFarlane et al., 

1993, Cristea et al., 2003). FCCU has become in the last decades the testing bench for many modern 

refinery control systems. This chemical process has been traditionally controlled using algorithms 

based on a linear time-(in)variant approximate process model, the most common being step and 

impulse response models derived from the convolution integral. Linear model predictive control has 

proved its benefits in the petrochemical industries in the past two decades, but nonlinear model 

predictive control (NMPC) has the potential to achieve higher productivity by exploiting the 

advantages of taking process nonlinearities explicitly into account (Qin and Badgewell, 2003). 

However, the application of NMPC requires models with good prediction quality. With the increase of 

computing power and the development of modern optimisation and model reduction algorithms 

recently there has been a growing emphasis on the control of complex continuous and batch chemical 

processes (Baldea et al., 2006; Engell, 2007; Skogestad, 2004; Araujo et al., 2007; Nagy and Braatz, 

2003). 

The present paper presents the simulation results obtained with a complex dynamic model of 

the FCCU. The developed model simulates the dynamic behaviour of the reactor-regenerator-

fractionator system and predicts the composition of the main products (gasoline and diesel). The 

composition of the main products is controlled in an inferential NMPC control scheme, based on the 

complex high-order nonlinear model. The advantages of a modern NMPC approach, the so-called 

quasi-infinite-horizon nonlinear model predictive control (QIHNMPC) and moving horizon estimator 



nonlinear MPC (MHE-NMPC) are shown to achieve better control performance, however with 

increased computational load. Based on a multiple shooting technique, efficient solution of the on-line 

optimisation is obtained even for the case of the high dimensional model. 

The paper is structured as follows: Section 2 consists in the description of the plant and 

presents the simulation results obtained with the developed model. Section 3 describes the NMPC 

approaches and the related solution of the optimisation problem, together with the simulation results. 

Conclusions are presented in Section 4. 

2. Dynamic Modelling of the FCCU 

2.1 Description of the system 

The schematic diagram of the FCCU, for which the mathematical model was developed and 

the assessment of the NMPC has been performed, is presented in Figure 1. 

 

Figure 1. FCCU plant 

 

Pre-heated feed is mixed with the hot slurry recycle (from the bottom of the main fractionator) 

and injected into the reactor riser, where it mixes with hot regenerated catalyst and totally vaporizes. 

As a result of the cracking reactions the main products are obtained and a carbonaceous material 

(coke) is deposited on the surface of the catalyst. Separation of the catalyst and gas occurs in the 

disengaging zone of the reactor. Entrained catalyst is removed in cyclones. Catalyst is returned to the 

stripping section of the reactor where steam is injected for removing entrained hydrocarbons. Since 

coke poisons the catalyst, continuous regeneration is required. Spent catalyst is transported from the 

reactor to the regenerator. Air is injected into the bottom of the regenerator. Catalyst in the regenerator 

is fluidized by the injected air; carbon and hydrogen on the catalyst react with oxygen to produce CO, 

CO2 and H2O. Gas travels up in the regenerator into the cyclones where the entrained catalyst is 

removed and returned into fluidized bed. The regenerated catalyst returns to the reactor riser where is 



mixed with the raw material and the process starts again. Reactor products (gases, gasoline, diesel, 

slurry) are passed to the main fractionator for further separation (Sadeghbeigi, 2000). 

 

2.2 FCCU model 

The FCCU model has been developed based on reference construction and operation data 

from an industrial unit. The developed dynamic simulator consists of detailed models of the feed and 

preheats system, reactor riser and stripper, regenerator, air blower, wet gas compressor, catalyst 

circulation lines and main fractionator. Three fresh feeds are available to the FCCU system: gas-oil 

from tankage, wash oil and diesel. The sum of these flows represents the total fresh feedrate. Slurry 

recycle from the bottom of the main fractionator is added to the fresh feed stream after the preheating 

furnace.  

The feed system model neglects the rapid dynamics of the flow control loops and 

consequently, the flow streams and actual flows are equal to the controller setpoints at all times. The 

furnace firebox temperature and outlet temperature from the preheat system are modelled based on the 

dynamic heat balance. 

Reactor is divided in two parts, the riser and the stripper. The reactor riser is simulated as a 

diluted solid phase transport line, in which hot catalyst from the regenerator mixes with feed oil from 

the preheat system and recycle oil (slurry) from the main fractionator. The hot catalyst provides 

sensible heat, heat of vaporization and heat of reaction for the endothermic cracking reactions. All of 

the cracking reactions are assumed to occur only in the reactor riser. The yield of coke deposited on 

the catalyst in the riser is assumed to be influenced by the weight hourly space velocity in the riser, the 

concentration of carbon on regenerated catalyst, the catalyst residence time in the riser and the coking 

characteristics of the various feeds. The coke balance includes the carbon entering the reactor with 

regenerated catalyst. The riser energy balance assumes plug flow dynamics, with negligible heat loss 

to the environment. The heat of cracking is assumed proportional to the riser temperature. A constant 

temperature drop across the reactor stripper is assumed. The pressure at the bottom of the reactor riser 

and the inventory of catalyst in the riser are also modelled. A five lump kinetic model (schematically 

shown in Figure 2) that predicts the yield of valuable products is proposed and included in the 



simulator (Dupain et al. 2003). The plug flow riser model was simulated by dividing it in a series of  

160 continuous stirred tank reactors (CSTR). For each of these CSTRs, the following assumptions 

have been made: less 10% of the raw material is uncrackable; effectively no gasoline overcracking 

takes place; diesel only cracks to gas and is not converted into gasoline. 

 

Figure 2. Five lump model for the catalytic cracking 

 

The rates of change in concentration for the five considered pseudocomponents are described 

by the equations: 

oil
1 2 3 oil oil conv 5 oil oil coke

dy ( ( k k k )( y x ) k ( y x ) )CTO
dt

ψ ψ= − + + − − −   (1) 

diesel
1 oil oil 4 diesel conv 6 diesel coke

dy ( k ( y x ) k y ) k y )CTO
dt

ψ ψ= − − −    (2) 

gasoline
2 oil oil conv

dy
k ( y x ) CTO

dt
ψ= −       (3) 

gas
3 oil oil 4 diesel conv
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( k ( y x ) k y ) CTO

dt
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coke
5 oil oil 6 diesel coke

dy ( k ( y x ) k y ) CTO
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ψ= − +      (5) 

where 1k , 2k , 3k , 4k , 5k , 6k  are the reaction rate constants (s-1); iy is the i-pseudocomponent mass 

fraction (gi/gfeed), xoil is the uncrackable gas-oil  mass fraction (ggasoil/gfeed) and CTO is the catalyst-oil 

ratio.  

The activity function of coke formation cokeψ  is described by the following equation: 

coke
coke

dt
d αψψ

−=         (6) 

The activity function of conversion convψ  is assumed the same for all the reactions: 

convd
c

conv k
dc

d ψψ
−=         (7) 



where α  is the deactivation constant for coke formation (s-1), kd is the deactivation constant for 

conversion (wt%-1) and cc is the coke content on the catalyst (wt%).  

For the regenerator model, the catalyst phase is assumed to be perfectly mixed. Coke 

deposited on the catalyst in the reactor consists of carbon and hydrogen. It is assumed that all of the 

hydrogen in the coke is burned off in the regenerator. The complete hydrogen conversion takes place 

according to the reaction:  

OH2OH4 22 →+       (8) 

Carbon in the coke reacts with oxygen to produce CO and CO2 by the following reactions: 

COOC 22 2 →+       (9) 

22 COOC →+       (10) 

Carbon monoxide reacts to produce carbon dioxide according to: 

22 CO2OCO2 →+       (11) 

The residual carbon remaining on the catalyst after regeneration is returned to the reactor with 

the regenerated catalyst, where additional coke is deposited. Both, reactor and regenerator mass and 

heat transfer are complex. Two zones frequently describe the regenerator model: a dense bed (with 

dense phase and gaseous phase) and an entrained catalyst zone. The dense bed is assumed to consist of 

two phases: a bubble phase of gaseous reactants and products moving up the bed in plug flow, and a 

perfectly mixed dense phase containing gas and solid catalyst. Mass transfer occurs between the two 

phases as gas moves up into the bed. Since the dense phase of the fluidised bed is assumed to be 

perfectly mixed, the temperature is uniform in the bed. The gaseous phase of the bed is assumed to be 

in equilibrium with the dense phase. Catalyst is presented in the space above the dense bed (the 

disengaging zone) due to the entrainment. The amount of catalyst decreases with upward vertical 

distance. As long as catalyst is presented, heat is generated by reactions (9) and (10), which affect the 

regenerator energy balance. In the region above the disengaging zone, the dilute phase, only reaction 

(11) is significant since so little catalyst is present. The regenerator model consists of the mass balance 



equations for O2, CO, CO2 and coke, and the heat balance equations for the solid and the gaseous 

phases. These balance equations are correlated with equations describing entrained catalyst (bed 

characteristics) in the zone above dense bed, catalyst flow and pressure in the regenerator. Total 

combustion operation mode is considered.  

The air blower model is a single stage centrifugal compressor driven by a variable speed 

steam turbine system. A head-capacity performance equation is provided that relates suction volume 

as a function of discharge pressure, where the suction is at normal atmospheric pressure. The wet gas 

compressor is modelled as a single stage centrifugal compressor driven by a constant speed electric 

motor. It is assumed that the compressor is pumping against a constant pressure in the vapour recovery 

unit. Circulation of spent and regenerated catalyst is modelled as single phase flow governed by force 

balance equations both on the spent and regenerated catalyst lines. Factors that affect catalyst 

circulation in a real FCCU, such as concentration of carbon on regenerated catalyst and injection of 

stream at various points in circulation bends have been ignored in this model. Constant friction factors 

are assumed for each circulation lines. 

The distillation unit involves one of the most complex operations in the field of separation 

processes. The distillation products are mixtures of various hydrocarbon compounds and therefore, it 

is not possible to characterise them in terms of the individual components. A generally accepted 

practice is to express composition of crude oil and of the products in terms of a finite number of 

pseudocomponents. Each pseudocomponent, treated as a single component, is in fact a complex 

mixture of hydrocarbons and is characterised by an average boiling point and an average density 

(Halvorsen and Skogestad, 2003). The developed model consists in a continuous distillation column 

with 38 stages including a reboiler and a total condenser. The feed flow enters into the column at stage 

no.8 and is considered, together with the feed composition, as the main source of disturbance,. The 

114 order main fractionator model was developed under the following assumptions: a set of 3 

peseudocomponents (as multicomponent mixtures) have been considered: gasoline, diesel and slurry 

(the heavy component); relative volatilities of the components are constant; vapour holdup is negleted; 

constant molar flows (same vapour flow on all stages) is assumed; total condensation is taking place in 

the condenser and no energy balance and hydrodynamics are explicitly considered. The first 38 states 



are compositions of gasoline, the next 38 states are compositions of diesel, the last 38 states are liquid 

holdups on each tray. The pressure balance in the main fractionator is also modelled, considering the 

main fractionator as a buffer vessel between reactor and wet gas compressor. 

The new developed global model of the FCCU reactor-regenerator-main fractionator is a high 

order differential-algebraic equations system (DAE), consisting in 933 differential equations (ODEs) 

(133 equations from the mass, energy and momentum balance from the reactor stripper, regenerator, 

main fractionator, wet gas compressor, combustion air blower, catalyst circulation lines and 800 

equations emerged from the discretization of the riser model, and together with more than 100 

algebraic equations). The model was implemented in C programming language in order to obtaining 

an efficient solution and it was compiled for the Matlab/Simulink programming language to take 

advantage of its friendly graphical user interface. The model captures the major dynamic effects that 

may occur in an actual FCCU system. It is multivariable, strong interacting and highly nonlinear. First, 

the model it was used to study the dynamics of the process and then as internal part of the NMPC 

controller. 

 

2.3 FCCU modelling results 

 The new developed dynamic simulator provides useful information regarding the open-loop 

dynamic behaviour of the global reactor-regenerator-fractionator system, predicting the composition 

of the main products (gasoline and diesel) during the disturbance action. Effects of different sets of 

disturbances have been studied. From this set, the progress of the most representative process variables 

in the presence of  disturbance in the effective coke factor in the gas-oil feed (Kc) is presented in 

Figure 3.  

 

Figure 3. Simulation of FCCU dynamic behaviour in the presence of coking rate disturbance 

(5% step increase at t=200 min) 

 

The effective coke factor (Kc > 0) is incorporated in the coke and wet gas yield model as a 

parameter that reflects the changes in the quality of the gas oil (Kc = 1 for normal gas oil, Kc > 1 for 



heavier than normal gas oil, which yields to more coke formation, and Kc < 1 for lighter than normal 

gas oil, with less coke production than in the base case).  This type of disturbance simulates changes 

in properties of the feed oil resulting in the increase of the amount of coke deposited on the catalyst. 

For the industrial unit, this kind of coking rate change is possible to appear due to the fresh feed 

composition change or to disturbances in the recycle flow rate. The 5% increase in the coking rate 

determines the temperature rise in regenerator Treg by 2.5 0C. The increase in the regenerator 

temperature induces an increase in the reactor temperature Tr by 10C, which leads to an intensification 

of cracking reactions with the effect on reactor pressure, P4. The flowrate of spent catalyst Fsp 

decreases, but it is superior to the regenerated catalyst flowrate Frgc. The decrease of the regenerated 

catalyst flow decreases the catalyst-to-oil ratio, and this leads to a fast decrease of the coke amount in 

riser, cokeriser. The decrease of the spent and regenerated catalyst flowrate has a direct consequence on 

the reactor and regenerator: the decrease of 10% (4 tons) in the catalyst inventory Wr and the decrease 

of 0.07% (0.1 tons) in the regenerator catalyst inventory Wreg. The coke amount in riser decrease; the 

net coke contribution decreases and for this reason, the combustion in the regenerator is performed in 

a diminished excess of oxygen (30% decreases of O2 concentration, XO2). The equilibrium of carbon is 

shifted to an increased amount of CO2 formation (10.5% increase of CO2 concentration, XCO2). Taking 

into account the fact that heat generated by CO formation is about three times less than CO2 heat 

formation, the global effect is the reduction of the net heat contribution in the regenerator, with 

consequence on the relative small temperature decrease shown during the last part of the simulation. 

The O2 concentration increases and the CO2 amount decreases in the last period of the simulation due 

to the small decrease of the reactor pressure. This disturbance influences also the catalyst-to-oil ratio 

and the products composition in main fractionator. After a small peak, gasoline composition on the 

top of the column decreases and diesel composition increases. The selected disturbance has an 

important economical impact on the plant profit and gasoline octane number, due to the value of the 

main products obtained in the fractionator. A small increase or decrease of the products composition 

(gasoline and diesel) may have a significant profit effects taking into account the large production 

capacity of the plant. 

 



2.4. Economical aspects 

With this simulator it was possible not only to study the process behaviour but it is also 

possible to investigate the plant gross profit and gasoline octane number, in order to take consistent 

decisions concerning the increase of the plant profitability.  

Gross Profit of the FCCU may be formulated as:  

Profit = column flow × gasoline composition × gasoline cost  + 
             + column flow × diesel composition × diesel cost - raw material × gas oil flow cost

 (12) 

The motor octane number (MON) and the research octane number (RON) have the following 

expressions (Ellis et al, 1998):  

rMON =72.5+0.05(T - 900)+0.17( - 0.55)ξ     (13) 

RON = 1.29MON +12.06       (14) 

where Tr denotes the reactor temperature and  ξ  is the conversion. 

The gasoline octane number (CO) may be computed by the following formula: 

MON + RONCO =
2

        (15) 

The Plant Gross Profit and Gasoline Octane Number are sensitive to the coking rate disturbance Kc 

allows:  

- 5% increase in the coking rate results in the decrease the plant profit by 6.5 %, 

- 5% increase in the coking rate leads to the increase of the CO from 93.44 to 93.57. 

 The FCCU model was validated using industrial process data from the ROMPETROL 

Refinery, Romania. Results obtained with the dynamic simulator present a good fit with industrial 

operating data, as simulated process variables are situated in a range corresponding to industrial unit 

behaviour, shown in Table 1: 

 

Table 1. Typical operating conditions and values obtained with the simulator 

 

3. Nonlinear Model Predictive Control of the FCCU 



This section presents the novel Nonlinear Model Predictive Control algorithms applied for the 

control for the Fluid Catalytic Cracking of gas-oil.  

In the wide variety of chemical processes, nonlinearity is rather the rule than the exception. 

Although it is well recognized that the performance of a control system is most dependent on how 

successfully it can cope with the nonlinearity of the process, chemical processes have been 

traditionally controlled by algorithms based on linear time-invariant approximate process models, the 

most common being step and impulse response models derived from the convolution integral. In the 

past decade, Model Predictive Control (MPC) has become a preferred control strategy for a large 

number of processes. The main reasons for this success consist in its ability to handle constraints in an 

optimal way and the flexibility of its formulation in the time domain. Linear MPC schemes, i.e. MPC 

schemes for which the prediction is based on a linear description of the plant, are by now routinely 

used in a number of industrial sectors and the underlying control theoretic problems, like stability, are 

well studied. Nonlinear model predictive control (NMPC), i.e. MPC based on a nonlinear plant 

description, has only emerged in the past decade and the number of reported industrial applications is 

continuously growing (Agachi et al, 2006).  

 

3.1 Nonlinear Model Predictive Control algorithm 

Nonlinear Model Predictive Control (NMPC) is an optimisation-based multivariable 

constrained control technique that uses a nonlinear dynamic process model for the prediction of the 

process outputs. At each sampling time, the model is updated based on new measurements and state 

variable estimates. Then, the open-loop optimal manipulated variable moves are calculated over a 

finite control horizon with respect to some cost function, and the manipulated variables for the 

subsequent control horizon are implemented (Chunyang et al, 2003, Allgöwer et al, 2004). 

Subsequently, the prediction horizon is shifted by usually one sampling time into the future and the 

previous steps are repeated, Figure 4.  

 

Figure 4. NMPC algorithm 

 



In the Figure 4, r  denotes the reference trajectory, which may be a filtered value of the 

demanded value w , y  is the controlled variable, u is the manipulated variable, pN , cN  are the 

prediction and control horizon, t∆  is the sampling time.  

A general formulation of the performance function may be developed and the optimisation 

problem to be solved at each sampling time can be formulated as follows: 

2 2 ' 2

( )... ( 1)
1 1 1

min { || ( ( ) ( )) || || ( 1)|| || ( ( 1) ( 1)) || }
p c c

c
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ref

i P i iu k u k N
i i i

Q r k i y k i R u k i R u k i u k i
+ −

= = =

+ − + + ∆ + − + + − − + −∑ ∑ ∑  (16) 

The predicted values of the output variables yp can be considered equal to the values obtained 

from the model ym, but usually a correction is made to reduce the cumulative error effect of the 

measurement errors and the model/plant mismatch. The correction equation usually has the following 

form: 

))()(()()()( kykyikKikyiky Pmmp −⋅+++=+     (17) 

The decision variables in the optimisation problem are the control actions at Nc sampling time 

steps into the future (control horizon). Generally, 1≤ Nc ≤Np and it is assumed that manipulated 

variables are constant beyond the control horizon. Although the optimisation provides a profile of the 

manipulated input moves over the entire control horizon, only the first control action is implemented. 

After the first control action implementation, new measurements are obtained which are used for the 

compensation of plant/model mismatch and for the estimation of unmeasured state variables. Finally, 

the prediction horizon Np is shifted by one sampling time into the future and the optimisation is 

performed again. 

 

3.2 NMPC with guaranteed stability 

 Different NMPC approaches have been proposed that guarantee stability of the closed-loop 

system even under finite prediction horizon. The approach used in this paper is the so-called quasi-

infinite horizon nonlinear MPC (QIHNMPC) in which the prediction horizon is quasi-extended to 

infinity by introducing a terminal penalty term in the objective function. The basic idea of this 

approach consists in the approximation of the infinite prediction horizon to achieve closed-loop 



stability, whereas the input function to be determined on-line is of finite horizon. The terminal penalty 

term is added and determined off-line such as it bounds from above the infinite horizon objective 

function of the nonlinear function controlled by a local state feedback law. The terminal penalty term 

can be chosen to be quadratic when using a local linear feedback law and a quadratic objective 

function (Allgöwer et al., 1999, Nagy, 2001).  

The key problem in this approach is the choice of the form and the off-line computation of the 

terminal region and penalty term, which is in general a difficult task because of the nonlinearity of the 

system (Chen and Allgöwer, 1998).  

 

3.3 NMPC with Moving Horizon Estimator 

In a typical industrial application, there is an important need to reconstruct unmeasured states 

based on a limited number of available measurements. A Moving Horizon Estimator (MHE) is 

employed for the states estimation. Benefits emerge because MHE incorporates physical state 

constraints into an optimisation formulation, accurately uses the nonlinear model and optimises over a 

trajectory of states and measurements (Haseltine and Rawlings, 2003). Considering as a nonlinear 

programming (NLP) problem, the MHE estimator approach may be formulated as follows: 

Problem P1: 

,

2 2

1

min{ }
k N e

k
meas ref

MHE i i e eW Zx j k N

J y y
θ

θ θ
− = − +

= − + −∑      (18) 

subject to:  

1 1( , , )i j jx f x u θ− −= , 1,...,j k N k= − +      (19) 

( , )i jy g x θ=  , 1,...,j k N k= − +       (20) 

,min ,maxe eθ θ θ≤ ≤         (21) 

where N is the estimation horizon, W, Z are weighting matrices and eθ is a subset of model parameters 

selected for on-line adjustment. ref
eθ is a set of reference values and ,min ,max,e eθ θ are the specified 



lower and upper bounds for the adjustment parameters; iy  denotes the output at discrete time i, and 

meas
iy is its corresponding measurement. 

The second term of the problem P1 penalizes parameter moves away from reference values, 

while the constraints ensure that parameter estimates stay within reasonable physical ranges. In the 

problem P1 the inputs ju , ,..., 1j k N k= − −  are known inputs applied to the system. The solution of 

the problem P1 is used to calculate an estimate of the controlled variable when the latter is not 

measured. 

 

3.4 Efficient solution of the NMPC optimisation via multiple shooting 

NMPC is typically implemented as a two-step algorithm consisting in the state estimation and 

the prediction, in order to minimize a specified control objective function. An NMPC algorithm must 

also be formulated to provide integral action in the feedback path. As the starting point for the 

development of the state estimation and predictive control algorithms the following general 

differential-algebraic optimisation problem is consider (Allgöwer et al, 2004): 

Problem P2: 

Minimize 
0

{ ( ( ), ) [ ( ), ( ), ] }ft

f f t
J x t t L x t u t t dtφ= + ∫     (22) 

subject to:  

( ) ( ( ), ( ))x t f x t u t=
⋅

        (23) 

0))(),(( =tutxg         (24) 

0))(),(( ≤tutxh         (25) 

where J is the state estimation or predictive control objective function, ( )x t and ( )u t are the state and 

input vectors, respectively, and f and g represent the mechanistic model of the system consisting in a 

set of coupled differential and algebraic equations and h represents the bounds on system variables or 

other linear or nonlinear constraints. 



Problem P2 can neither be solved by typical NLP techniques nor by optimal control methods. 

In general, NLP methods cannot optimise continuous systems while optimal control methods do not 

handle algebraic constraints for g and h. Considering the discrete nature of the online control problem, 

a convenient approach for solving problem P2 is to formulate its discrete approximation that can be 

handled by conventional NLP solvers. For its generality, an alternating formulation for the discrete 

approximation of the Nonlinear Model Predictive Control problem is considered, Problem P3. The 

prediction horizon f[0, t ]  is divided into p equally spaced time intervals t∆ , with discrete time 

k i+ representing t i t= ∆ , 0,1...i p= . 

Problem P3:  

2 2 2

| | |min { }
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c ref ref

NLMPC j k k j j k j j k SQ Ru u ...,u j k+1 j k
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= =

= − − + − + ∆∑ ∑  (26) 

subject to:  

|j k j-1|k, j-1|kx f(x u ,θ)= , 1,...,j k k p= + +      (27) 

c
j|k j|ky = g(x ,θ) , 1,...,j k k p= + +       (28) 

min / max
c c c

j ky y y≤ ≤ , 1,...,j k k p= + +       (29) 

min | maxj ku u u≤ ≤ , ,..., 1j k k m= + −       (30) 

min | maxj ku u u∆ ≤ ∆ ≤ ∆ , ,..., 1j k k m= + −      (31) 

|j k j-1|ku u= , 1,..., 1j k m k p= + − + −       (32) 

where p is the prediction horizon, m is the control horizon, |j ku is the process input variable and |
c
j ky  

is the controlled output variable at the discrete time j , calculated from information available up to the 

discrete time k ; | |j k j k j-1|ku u u∆ = − , ,...j k k m -1= + , are present in the objective function to allow 

excessive input moves to be penalized and constrained if necessary; kd is an estimate of unmeasured 

disturbance at time k , and is required in the control formulation to ensure offset free operation of the 

controller. 



At each control interval, the entire Problem P3 is solved but only the input |k k ku u=  is 

implemented. , ,Q R S are the weighting matrices and θ  is a vector of model parameters. The target 

trajectories ,ref refy u  are obtained from the solution of an off-line dynamic optimisation problem. 

A very efficient solution technique for the Problem P3 is based on the multiple shooting 

approach (Diehl et al, 2002). This procedure consists in dividing the time interval ],[ 0 fttt ∈  into a 

series of grid points ]t,...,t,t,t[ f210 . Using local control parameterisations, a shooting method is 

performed between successive grid points, Figure 5. The differential equations and cost on these 

intervals are integrated independently during each optimisation iteration, based on the current guess of 

the control. The continuity/consistency of the final state trajectory at the end of the optimisation is 

enforced by adding consistency constraints to the nonlinear programming problem. A set of starting 

values for the state and adjoint vectors is required at each grid point in time. Continuity conditions for 

the solution trajectory introduce additional interior boundary conditions, which are incorporated into 

one large zero-finding problem to be solved. The solution of Problem P2 is performed using an NMPC 

tool, OptCon, (Nagy et al., 2004) based on the sequential-quadratic-programming (SQP) type 

optimiser HQP. The NMPC tool developed includes a number of desirable features. In particular, the 

NMPC is based on first-principle models, and the problem can be set up in Matlab  (The Mathworks 

Inc.), which is the most widely used modeling and control environment for control engineers. The 

model used in the controller has to be developed in the form of Simulink (The Mathworks Inc.) “mex 

S-function” using C language. The S-function interface of the optimization tool provides convenient 

and fast connectivity with Matlab. The NMPC approach is based on a state-of-the-art large-scale 

nonlinear optimization solver, HQP, (Franke et al.) which offers one of the most efficient approaches, 

based on the multiple shooting algorithm, that exploits the special structure of optimization problem 

that arise in NMPC. HQP is used in conjunction with the implicit differential-algebraic-equation 

(DAE) solver, DASPK, for robust and fast solution finding of the model equations. OptCon provides a 

very efficient tool for rapid prototyping NMPC applications even in industrial environment (Nagy et 

al., 2007).   

 



Figure 5. Illustration of the multiple shooting approach 

 

The solution of the Problem P2 requires a certain, usually not negligible, amount of 

computation time, while the system is evolving to a different state. In this case, the optimal feedback 

control ],...,,[)( 10
*

kkk tpttk uuutu = computed at the moment kt  and corresponding to the information 

available up to this moment will no longer be optimal. Computational delay kδ  has to be taken into 

consideration in real-time applications. First, at time moment kt , the control input from the second 

stage of the previous optimisation problem, 
11| kt

u
−

(which corresponds to the first stage of the current 

optimization) is injected into the process. Then, the solution of the current optimisation problem is 

started, with fixed 
10| 1|k kt tu u

−
= . After completion, the optimisation idles for the remaining period of 

time ),( 1++∈ kkk tdtt , and then at the beginning of the next step (at the moment ttt kk ∆+=+1 ), 

1| kt
u is introduced into the process and the algorithm is repeated. This approach requires real-time 

feasibility for the solution of each open-loop optimisation problems ( tdk ∆≤ ). 

 

3.5 NMPC FCCU simulation results 

The complex dynamic model of the FCCU was used in the NMPC algorithm. First, the 

nominal NMPC was considered without the penalty term and terminal constraints, in order to test 

different control structures under different disturbance scenarios. From the performed simulations it is 

presented the 5 5 (controlled manipulated variables) control structure. The five controlled variables 

are: reactor temperature Tr, fractionator pressure P5, reactor catalyst inventory Wr and gasoline 

composition at the top and bottom of the main fractionator. The five manipulated inputs are: slide 

valve positions svsc and svrgc on the spent and regenerated catalyst circulation lines, stack valve 

position V14, condenser’s liquid flowrate LT and reboiler’s liquid flowrate VB, Figure 6. The coking 

rate Kc change (step increase at moment t=10 min) has been selected as a typical disturbance.  

The control of presented variables is important for the efficient and safe operation of the unit 

and have direct impact on the products yield. The reactor temperature has to be maintained at a certain 



level to provide a desired maximum conversion of the feed oil. A proper reactor temperature control 

means also a good management of thermal energy. Control of reactor catalyst inventory is necessary to 

provide stabilization and safety in the catalyst circulation. Reactor pressure control directly influences 

the coke and gases formation. Composition of the products must be maintained at desired certain 

values to assure the products quality and plant productivity.  

 

Figure 6. Simulation of FCCU dynamic behaviour in the presence of the coking rate 

disturbance (1 % step increase t=10 min); NMPC results (dotted line) and open loop 

modelling results (solid line); (a) - controlled variables; (b)- manipulated variables 

 

The QIHNMPC algorithm was applied for a control structure with the three controlled 

variables: reactor temperature Tr, regenerator temperature Treg and catalyst inventory in the reactor Wr. 

The corresponding three manipulated inputs were: spent and regenerated catalyst circulation slide 

valve position svsc and svrgc, and the fresh feed flow entering the reactor riser F3. Figure 7 illustrates 

the performance of the QIHNMPC for different off-nominal initial conditions of the reactor 

temperature, Tr), considered as different disturbance scenarios for the investigated control scheme. It 

may be noticed that asymptotic stability is achieved in all cases. The very small terminal region 

(projections of the hyper-ellipsoid on the shown state space) is caused by the strong nonlinearity of the 

system.  

 

Figure 7. Trajectories for the system controlled by QIHNMPC 

 

The QIHNMPC results have been compared with the nominal NMPC considered without the 

penalty term and the terminal constraints. Figure 8 shows that QIHNMPC achieves better control 

performance compared to the nominal NMPC, however with increased computational burden. By the 

use of QIHNMPC the system is stabilized faster (different figure scales are used to show details). 

 



Figure 8. Comparison between QIHNMPC and NMPC for 16°C disturbance in Tr; QIHNMPC 

results (solid line) and NMPC results (dotted line); (a)- controlled variables; (b)- manipulated 

variables 

 

The efficient implementation of the continuous time output feedback Nonlinear Model Predictive 

Control using a Moving Horizon Observer (MHE) for the FCCU states estimation was also 

investigated. For the output feedback NMPC approach applied in this work and by the use of the MHE 

technique, only measurements that are available in practice are considered, whereas the rest of the 

states are estimated together with the uncertain model parameters.  

Figure 9 comparatively presents the open-loop simulation results of the FCC plant and the 

simulation results using the MHE algorithm in the presence of the coke disturbance factor Kc. (0.9% 

increase at t=45 s). The considered disturbance influences the reactor temperature Tr, the regenerator 

temperature Treg, the regenerator Wreg and reactor Wr catalyst inventories, the carbon inventory in the 

regenerator (number moles in regenerator) n but also has an important impact on the system pressure: 

combustion air blower suction pressure P1, combustion air blower discharge pressure P2, fractionator 

pressure P5, regenerator pressure P6 and wet gas compressor suction pressure P7. Figure 9 presents the 

evolution of the FCCU model states using the following available measurements found in practice: Tr, 

Treg, P1, P2, P5, P6. The MHE reconstructs the states of the FCCU system from process measurements 

but also estimates the unknown model parameter Kc. As may be noticed, a few states are difficult to be 

estimated (e.g. Wreg, Wr, and n). However the estimator achieves excellent performance in estimating 

the unknown model parameter Kc. 

 

Figure 9. Performance of the MHE in the case of the Kc disturbance (0.9 % step increase at 

t=2 min) - MHE results (dotted line) and open-loop modelling results (solid line) 

 

The combined MHE-NMPC algorithm was applied for the FCCU reactor and regenerator 

temperature control, in the case of the column pressure P5 disturbance (3% step decrease at the 



beginning of simulation) using as manipulated variables the input flow rate in the reactor riser F3 and 

the slide valve position on the spent catalyst pipe svsc, Figure 10. The overall performance of the 

MHE-NMPC is very good as the temperatures are kept close to the reference values.  

 

Figure 10.  Simulation results of the MHE-NMPC in the case of the P5 disturbance (3% step 

decrease at t=0 min) 

 

The CPU computational times corresponding to the MHE and NMPC calculations are 

presented in Figure 11. The dimension of the optimisation problem for the NMPC is only two, since a 

control horizon of only one sampling time is used, whereas the dimension of the optimisation problem 

of the MHE is high due to the large number of FCC model states, thus leading to a significantly higher 

computational effort. Figure 11 demonstrates the efficiency of the multiple shooting approach .The 

computational time scales only linearly with dimension of the optimisation problem and the maximum 

total computational time (approximately 13 s) is well bellow the sampling time of 120 s. The results 

demonstrate that efficient optimisation algorithms can guarantee the real-time feasibility of the MHE-

NMPC implementation even for a model with a large number of ODEs (as 933 ODEs have been used 

in the presented investigation). 

 

Figure 11. CPU times required for the optimisation problems of the MHE and NMPC 

 

A comparative study of FCCU control has been also performed for different MPC algorithms 

(based on linear and nonlinear FCCU models) and the classical PID control. The results are presented 

in the Figure 12 and Figure 13. As controlled variables have been chosen the reactor temperature Tr, 

the regenerator temperature Treg and catalyst inventory Wr. As manipulated variables, the spent and 

regenerated catalyst circulation lines slide valve positions svsc, svrgc and the fresh feed flow entering 

in riser F3 have been used. The chosen disturbance is the pressure drop between main fractionator and 

reactor disturbance ∆ Pfrac (27% step decrease at t=12 min).  

 



Figure 12. Comparison between different FCCU control approaches in the presence of the 

pressure drop disturbance (27% step decrease at t=12 min), the controlled variables; a) 

LMPC (dotted line); NMPC (solid line) and b) PID control 

 

Figure 13. Comparison between different FCCU control approaches in the presence of the 

pressure drop disturbance (27% step decrease at t=12 min), the manipulated variables; a) 

LMPC (dotted line); NMPC (solid line) and b) PID control 

 

MPC based on the nonlinear NMPC performs better FCCU control compared to the MPC 

based on the linear LMPC, and both show superior control performance then classical PID control. 

4. Conclusions 

The paper presents the new model and dynamic simulation results for the FCCU reactor-

regenerator-main fractionator aggregate system using a five lump kinetic model for the riser. The 

model consists in a set of 933 ODEs. Based on this complex nonlinear model, different Model 

Predictive Control based algorithms have been investigated for the FCCU control. A 5 5 control 

scheme is proposed and proved as being able to control the gasoline obtained from the main 

fractionator. The model was subsequently used to simulate the performance of the quasi-infinite-

horizon NMPC in order to achieve fast stabilization of the closed-loop system. It is shown that using 

state-of-the-art optimization approaches based on the modern multiple shooting algorithm the real-

time feasibility can be achieved even in the case of the very high order FCCU model. The paper also 

assesses the good performance of the Moving Horizon Estimation based Nonlinear Model Predictive 

Control approach for this case of the highly complex industrially relevant process represented by 

FCCU. The appropriate estimation of the model states or unmeasurable parameters is critical to the 

success of model based process monitoring and control applications. NMPC algorithms perform very 

well in tracking the setpoints and rejecting disturbances and simulations proved that the MPC based on 

the nonlinear model is successful, despite the complex nonlinear features of the FCC system. NMPC 



performs better then the LMPC and both are significantly better then the classical PID control, 

regarding settling time, overshoot and keeping controlled variables close to the operation or equipment 

constraints. The results demonstrate that industrial applications of modern NMPC approaches to 

complex chemical processes can be brought in the realm of possibility. Simulation results demonstrate 

that using state-of-the-art optimization algorithms and advanced control together with estimation 

strategies can be implemented on complex industrially relevant problems. The results of the proposed 

control structures encourage the application of the new control scheme to the industrial systems. 

 

Nomenclature 

cc           coke content on the catalyst (wt%) 
CO         gasoline octane number  
CTO       catalyst-to-oil ratio 
cokeriser    coke amount in riser  

kd          estimate of unmeasured disturbance at time k  
f        mechanistic model of the system consisting in a set of coupled differential and algebraic              

equations 
Frgc         flowrate of regenerated catalyst (kg/s) 
Fsp          flowrate of spent catalyst (kg/s) 
F3           flow of fresh feed to reactor riser (m3/h) 
g        mechanistic model of the system consisting in a set of coupled differential and algebraic       

equations 
h             bounds on system variables or other linear or nonlinear constraints 
Kc           effective coke factor for gas-oil feed  
kd           deactivation constant for conversion (wt%-1) 
ki            reaction rate constants (s-1) 
J             state estimation or predictive control objective function 
LT          condenser’s liquid flow (kg/min) 
n             number moles in regenerator (moles)  
N            estimation horizon 
Nc           control horizon 
Np           prediction horizon  
P1           combustion air blower suction pressure (bar) 
P2           combustion air blower discharge pressure (bar) 
P4           reactor pressure (bar) 
P5                 fractionator pressure (bar) 
P6           regenerator pressure (bar) 
P7           wet gas compressor suction pressure (bar) 
Q            weighting matrice 
r            reference trajectory 
R            weighting matrice 
svsc        slide valve positions on the spent catalyst circulation line (0-1) 
svrgc      slide valve positions on the regenerated catalyst circulation line (0-1) 
S             weighting matrice 
Tr            temperature of reactor (°C) 



Treg         temperature of regenerator (°C) 
u            manipulated variable 

( )u t        input vector 
uref                target trajectorie of the manipulated variables 
VB          reboiler’s liquid flowrate (kg/min) 
V14                stack valve position (0-1) 
Wr          inventory of catalyst in reactor (tons) 
Wreg        inventory of catalyst in regenerator (tons) 
W           weighting matrice 
xoil          uncrackable gas-oil mass fraction (goil/gfeed) 
x(t)         state vector 
y             controlled variable 
ydiesel       pseudocomponent (diesel) mass fraction (gdieseli/gfeed) 
yoil          pseudocomponent (gas-oil) mass fraction (ggasoil/gfeed) 

meas
iy      corresponding measurement of the output at discrete time i 

ym           predicted values obtained from the model  
yp            predicted values of the output variables  
yref                target trajectorie of the output variables 
Z            weighting matrice 
 
Greek symbols 
α           deactivation constant for coke formation (s-1) 

t∆          sampling time (s) 

cokeψ      activity function of coke formation  

convψ      activity function of conversion  
ξ             conversion in reactor riser 
θ            vector of model parameters 

eθ           subset of model parameters selected for on-line adjustment 
ref
eθ        set of reference values  

,min ,max,e eθ θ  specified lower and upper bounds for the adjustment parameters 
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Figure 1. FCCU plant 

 

 

 

 

Figure 2. Five lump model for the catalytic cracking 

 

 

 

 

 

 

 

 

 

 

Fuel gas Wash oil

Fresh feed

Atm. air 

Steam 

Fractionator 

Diesel

Furnace

Stack gas 

Wet gas compressor

Reactor 

Combustion  
Air Blower 

 Steam

Slurry

Regenerator 

Coke 

Diesel

k3
k4

k6k5

k2

k1Oil 

Gasoline Gas 

V14 

P4 

P6 

Wr 

Wreg 

P5 

svsc 
svrgc 

F3 



 

 

 

0 100 200 300 400 500 600
524.5

525

525.5

time (min)

T r( °
C

)

0 100 200 300 400 500 600
709

710

711

712

time (min)

T re
g( °

C
)

     

0 100 200 300 400 500 600
1.515

1.52

1.525

1.53

time (min)

P
r (b

ar
)

0 100 200 300 400 500 600

0.0708

0.071

0.0712

0.0714

time (min)

co
ke

ris
er

(k
g/

kg
)

 

0 100 200 300 400 500 600
322

322.5

323

323.5

324

324.5

F sp
 (k

g/
s)

time (min)

0 100 200 300 400 500 600
322

322.5

323

323.5

324

F rg
c (k

g/
s)

time (min)      

0 100 200 300 400 500 600
36

37

38

39

40

W
r (t

on
s)

time (min)

0 100 200 300 400 500 600
151.5

151.55

151.6

151.65

151.7

W
re

g (t
on

s)

time (min)  

0 100 200 300 400 500 600
6

8

10

12
x 10-3

X
O

2 (m
ol

/m
ol

)

time (min)

0 100 200 300 400 500 600
0.16

0.162

0.164

0.166

X
C

O
2 (m

ol
/m

ol
)

time (min)         

0 100 200 300 400 500 600
0.9288

0.929

0.9292

0.9294

0.9296

time (min)

G
as

ol
in

e to
p (k

g/
kg

)

0 100 200 300 400 500 600

0.0708

0.071

0.0712

0.0714

time (min)

D
is

el
to

p(k
g/

kg
)

 

 

Figure 3. Simulation of FCCU dynamic behaviour in the presence of coking rate disturbance (5% 

step increase at t=200 min) 
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Figure 4. NMPC algorithm 

 

 

 

Figure 5. Illustration of the multiple shooting approach 
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Figure 6. Simulation of FCCU dynamic behaviour in the presence of the coking rate disturbance (1 % 

step increase t=10 min); NMPC results (dotted line) and open loop modelling results (solid line); a) - 

controlled variables ; b)- manipulated variables 
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Figure 7. Trajectories for the system controlled by QIHNMPC 
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Figure 8. Comparison between QIHNMPC and NMPC for 16°C disturbance in Tr; QIHNMPC results 

(solid line) and NMPC results (dotted line); (a)- controlled variables; (b)- manipulated variables 
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Figure 9. Performance of the MHE in the case of the Kc disturbance (0.9 % step increase at t=2 min) 

- MHE results (dotted line) and open-loop modelling results (solid line) 
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Figure 10.  Simulation results of the MHE-NMPC in the case of the P5 disturbance (3% step decrease 

at t=0 min) 
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Figure 11. CPU times required for the optimisation problems of the MHE and NMPC 
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Figure 12. Comparison between different FCCU control approaches in the presence of the pressure 

drop disturbance (27% step decrease at t=12 min), the controlled variables; a) LMPC (dotted line); 

NMPC (solid line) and b) PID control 
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Figure 13. Comparison between different FCCU control approaches in the presence of the pressure 

drop disturbance (27% step decrease at t=12 min), the manipulated variables; (a) LMPC (dotted 

line); NMPC (solid line) and (b) PID control 
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Figure Caption 

 

Figure 1. FCCU plant 

 

Figure 2. Five lump model for the catalytic cracking 

 

Figure 3. Simulation of FCCU dynamic behaviour in the presence of coking rate disturbance (5% 

step increase at t=200 min) 

 

Figure 4. NMPC algorithm 

 

Figure 5. Illustration of the multiple shooting approach 

 

Figure 6. Simulation of FCCU dynamic behaviour in the presence of the coking rate disturbance (1 % 

step increase t=10 min); NMPC results (dotted line) and open loop modelling results (solid line); a) - 

controlled variables ; b)- manipulated variables 

 

Figure 7. Trajectories for the system controlled by QIHNMPC 

 

Figure 8. Comparison between QIHNMPC and NMPC for 16°C disturbance in Tr; QIHNMPC results 

(solid line) and NMPC results (dotted line); (a)- controlled variables; (b)- manipulated variables 

 

Figure 9. Performance of the MHE in the case of the Kc disturbance (0.9 % step increase at t=2 min) 

- MHE results (dotted line) and open-loop modelling results (solid line) 

 

Figure 10.  Simulation results of the MHE-NMPC in the case of the P5 disturbance (3% step decrease 

at t=0 min) 

 



Figure 11. CPU times required for the optimisation problems of the MHE and NMPC 
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Table caption 

 

Table 1. Typical operating conditions and values obtained with the simulator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tables 

 

Table 1. Typical operating conditions and values obtained with the simulator 

 

Industrial Plant Data Process variable 

 

 

Measuring 

unit 

Minimum 

value 

Maximum  

value 

Value in simulator

 

Catalyst-to-Oil Ratio - 6.5 8.5 7.42 

Reactor pressure bar 1.5 2.2 1.51 

Regenerator pressure  bar 1.7 2.4 1.7 

Gasoline octane number - 0.9 0.96 0.94 

Main fractionator pressure bar 0.9 1.5 1.34 

Regenerator temperature 0C 682 735 709.63 

Reactor temperature 0C 505 535 524.51 

Raw material temperature 0C 190 320 303.58 

CO2 concentration in flue gas % 16 19 16.07 

O2 concentration in flue gas % 0.8 2.5 1.02 

Reactor Catalyst Inventory tons 35 50 39.76 

Total Catalyst Inventory tons 175 195 191 

 

 

 

 

 

 

 

 

 


