506 research outputs found

    Public crowdsensing of heat waves by social media data

    Get PDF
    Abstract. Investigating on society-related heat wave hazards is a global issue concerning the people health. In the last two decades, Europe experienced several severe heat wave episodes with catastrophic effects in term of human mortality (2003, 2010 and 2015). Recent climate investigations confirm that this threat will represent a key issue for the resiliency of urban communities in next decades. Several important mitigation actions (Heat-Health Action Plans) against heat hazards have been already implemented in some WHO (World Health Organization) European region member states to encourage preparedness and response to extreme heat events. Nowadays, social media (SM) offer new opportunities to indirectly measure the impact of heat waves on society. Using the crowdsensing concept, a micro-blogging platform like Twitter may be used as a distributed network of mobile sensors that react to external events by exchanging messages (tweets). This work presents a preliminary analysis of tweets related to heat waves that occurred in Italy in summer 2015. Using TwitterVigilance dashboard, developed by the University of Florence, a sample of tweets related to heat conditions was retrieved, stored and analyzed for main features. Significant associations between the daily increase in tweets and extreme temperatures were presented. The daily volume of Twitter users and messages revealed to be a valuable indicator of heat wave impact at the local level, in urban areas. Furthermore, with the help of Generalized Additive Model (GAM), the volume of tweets in certain locations has been used to estimate thresholds of local discomfort conditions. These city-specific thresholds are the result of dissimilar climatic conditions and risk cultures

    Seismic vulnerability assessment of existing Italian hospitals: The case study of the national cancer institute “G. Pascale foundation” of Naples

    Get PDF
    Introduction: A large portion of the Italian built heritage is characterized by a significant seismic vulnerability since many structures were designed with outdated criteria, i.e., without accounting for seismic actions. This aspect is particularly relevant for strategic structures and infrastructures, whose functionalities are crucial in case of seismic events. Objective: The main aim of the present paper is to share the key findings related to the seismic vulnerability assessment of the National Institute for the Study and Treatment of Cancer (IRCCS) “Giovanni Pascale Foundation” in Naples. In particular, the main evidences could be easily extended to existing hospitals realized in the last century, with the main reference to: construction techniques, quality of constructional material, overt and convert seismic vulnerabilities and possible intervention strategies for risk mitigation. Methods: In the present paper, the assessment methodologies adopted for such a strategic hospital complex are provided, focusing in particular on: i. preliminary research of original design documents and on-site investigation for determining constructional details; ii. material tests on structural elements; iii. vulnerability seismic assessment by means of non-linear FE analyses (push-over and capacity spectrum method); iv. recommendations on retrofitting measures and cost estimations. Results: The conducted study puts into clear evidence the inadequacy of the investigated buildings to face the design seismic actions provided by the current Italian code and thus showed the significant seismic vulnerabilities affecting the Institute “G. Pascale Foundation” of Naples. Among these, particular attention has also been focused on the so-called intrinsic vulnerabilities, namely the ones not measurable explicitly and interesting non-structural elements (e.g., connection of shelves, stained glass windows, facilities, etc.). Conclusion: The presented case study highlights the strong seismic vulnerability affecting structures realized in the past century, despite their strategic functions. On the whole, the examined structures can be considered as representative of this building typology, and the adopted calculation criteria, as well as the assumptions of the assessment process, could be easily extended to similar case studies

    The Catania 1669 lava eruptive crisis: simulation of a new possible eruption

    Get PDF
    SCIARA (Smart Cellular Interactive Automata for modeling the Rheology of Aetnean lava flows, to be read as “shea’rah”), our first two-dimensional Cellular Automata model for the simulation of lava flows, was tested and validated with success on several lava events like the 1986/87 Etnean eruption and the last phase of the 1991/93 Etnean one. Real and simulated events are satisfying within limits to forecast the surface covered by the lava flow. Moreover, improved versions have been adopted in testing other real lava flows of Mount Etna and of Reunion Island (Indian Ocean). The model has been applied with success in the determination of risk zones in the inhabited areas of Nicolosi, Pedara, S. Alfio and Zafferana (Sicily). The main goal of the present work has been the verification of the effects, in volcanic risk terms, in the Etnean area from Nicolosi to Catania, of a eruptive crisis similar to the event that occurred in 1669, as if the episode would happen nowadays. Catania has been severely interested in some major Etnean events in history, the most famous one being, namely, the 1669 eruption, involving 1 km3 of lava during 130 days. The simulation of lava tubes and the usage of different histories within the experiments have been crucial in the determination of a new risk area for Catania. In fact, simulations carried out without the introduction of lava tubes, never involved the city, proving the fact that lava tubes, played a fundamental role in the 1669 Catania lava crisis

    Stromboli: a natural laboratory of environmental science

    Get PDF
    The science of environment is per se multi- and inter-disciplinary. It is not possible to separate the role of the physical, chemical, biological, and anthropic factors, respectively. Research must therefore rely on suitable natural laboratories, where all different effects can be simultaneously monitored and investigated. Stromboli is a volcanic island slightly North of Sicily, within a tectonic setting characterised by a Benioff zone, curved like a Greek theatre, opened towards the Tyrrhenian Sea, with deep earthquakes. Moreover, it is a unique volcano in the world in that since at least ~ 3000 years ago, it has exploded very regularly, about every 15^20 min. Hence, it is possible to monitor statistically phenomena occurring prior, during, and after every explosion. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) has recently established a permanent Laboratory and an extensive interdisciplinary programme is being planned. A few main classes of items are to be considered including: (1) matter exchange (solid, liquid, gas, chemistry); (2) thermal and/or radiative coupling; (3) electromagnetic coupling; (4) deformation; (5) biospheric implications; and (6) anthropic relations since either the times of the Neolithic Revolution. Such an entire multidisciplinary perspective is discussed, being much beyond a mere volcanological concern. We present here the great heuristic potential of such a unique facility, much like a natural laboratory devoted to the investigation of the environment and climate.Published429-442JCR Journalreserve

    Archaeometric approach for the study of mortars from the underwater archaeological site of Baia (Naples) Italy: Preliminary results

    Get PDF
    This work was aimed to evaluate the features of mortar samples taken from the underwater archaeological area of Baia (Naples, Italy), an important site, where the remains of the ancient Roman city of Baiae and Portus Iulius are submerged after bradyseism events, started from 4th century AD. Several architectural structures are still preserved into the submerged environment, such as: luxurious maritime villas, imperial buildings, private houses, thermae, tabernae and warehouses. In particular, some samples were collected from the masonry walls belonging to a building of the underwater area called Villa a Protiro. A first archaeometric approach has been applied to analyse twelve archaeological mortars samples in order to define: textural features, chemical composition and raw materials used for their production. For this purpose different analytical methods were used, such as, polarizing optical microscope (POM) and scanning electron microscopy (SEM-EDS).This work was financially supported by national national research project “COMAS” (Planned COnservation, “in situ”, of underwater archaeological artifacts), funded by the Italian Ministry of Education, Universities and Research (MIUR).Peer reviewe

    Predicting the impact of lava flows at Mount Etna (Italy)

    Get PDF
    Forecasting the time, nature and impact of future eruptions is difficult at volcanoes such as Mount Etna, in Italy, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Nonetheless, the identification and quantification of areas at risk from new eruptions is fundamental for mitigating potential human casualties and material damage. Here, we present new results from the application of a methodology to define flexible high-resolution lava invasion susceptibility maps based on a reliable computational model for simulating lava flows at Etna and on a validation procedure for assessing the correctness of susceptibility mapping in the study area. Furthermore, specific scenarios can be extracted at any time from the simulation database, for land-use and civil defence planning in the long-term, to quantify, in real-time, the impact of an imminent eruption, and to assess the efficiency of protective measures

    Towards generalized measures grasping CA dynamics

    Get PDF
    In this paper we conceive Lyapunov exponents, measuring the rate of separation between two initially close configurations, and Jacobians, expressing the sensitivity of a CA's transition function to its inputs, for cellular automata (CA) based upon irregular tessellations of the n-dimensional Euclidean space. Further, we establish a relationship between both that enables us to derive a mean-field approximation of the upper bound of an irregular CA's maximum Lyapunov exponent. The soundness and usability of these measures is illustrated for a family of 2-state irregular totalistic CA
    • 

    corecore