32 research outputs found

    Temperature dependency of metabolic rates in the upper ocean: A positive feedback to global climate change?

    Get PDF
    The temperature of seawater can affect marine plankton in various ways, including by affecting rates of metabolic processes. This can change the way carbon and nutrients are fixed and recycled and hence the chemical and biological profile of the water column. A variety of feedbacks on global climate are possible, especially by altering patterns of uptake and return of carbon dioxide to the atmosphere. Here we summarize and synthesize recent studies in the field of ecology, oceanography and ocean carbon cycling pertaining to possible feedbacks involving metabolic processes. By altering the rates of cellular growth and respiration, temperature-dependency may affect nutrient uptake and food demand in plankton and ultimately the equilibrium of pelagic food webs, with cascade effects on the flux of organic carbon between the upper and inner ocean (the “biological carbon pump”) and the global carbon cycle. Insights from modern ecology can be applied to investigate how temperature-dependent changes in ocean biogeochemical cycling over thousands to millions of years may have shaped the long-term evolution of Earth's climate and life. Investigating temperature-dependency over geological time scales, including through globally warm and cold climate states, can help to identify processes that are relevant for a variety of future scenarios

    Calibration of key temperature-dependent ocean microbial processes in the cGENIE.muffin Earth system model

    Get PDF
    Temperature is a master parameter in the marine carbon cycle, exerting a critical control on the rate of biological transformation of a variety of solid and dissolved reactants and substrates. Although in the construction of numerical models of marine carbon cycling, temperature has been long-recognised as a key parameter in the production and export of organic matter at the ocean surface, it is much less commonly taken into account in the ocean interior. There, bacteria (primarily) transform sinking particulate organic matter into its dissolved constituents and thereby consume dissolved oxygen (and/or other electron acceptors such as sulphate) and release nutrients, which are then available for transport back to the surface. Here we present and calibrate a more complete temperature-dependent representation of marine carbon cycling in the cGENIE.muffin Earth system model, intended for both past and future climate applications. In this, we combine a temperature-dependent remineralisation scheme for sinking organic matter with a biological export production scheme that also includes a temperature-dependent limitation on nutrient uptake in surface waters (and hence phytoplankton growth). Via a parameter ensemble, we jointly calibrate the two parameterisations by statistically contrasting model projected fields of nutrients, oxygen, and the stable carbon isotopic signature (δ13C) of dissolved inorganic carbon in the ocean, with modern observations. We find that for the present-day, the temperature-dependent version shows as-good-as or better fit to data than the existing tuned non-temperature dependent version of the cGENIE.muffin. The main impact of adding temperature-dependent remineralisation is in driving higher rates of remineralisation in warmer waters and hence a more rapid return of nutrients to the surface there – stimulating organic matter production. As a result, more organic matter is exported below 80 m in mid and low latitude warmer waters as compared to the standard model. Conversely, at higher latitudes, colder water temperature reduces the rate of nutrient supply to the surface as a result of slower in-situ rates of remineralisation. We also assess the implications of including a more complete set of temperature-dependent parameterisations by analysing a series of historical transient experiments. We find that between the pre-industrial and the present day, in response to a simulated air temperature increase of 0.9 °C and ocean warming of 0.12 °C (0.6 °C in surface waters and 0.02 °C in deep waters), a reduction in POC export at 80 m of just 0.3 % occurs. In contrast, with no assumed temperature-dependent biological processes, global POC export at 80 m falls by 2.9 % between the pre-industrial and present day as a consequence of ocean stratification and reduced nutrient supply to the surface. This suggests that increased nutrient recycling in warmer conditions offsets some of the stratification-induced surface nutrient limitation in a warmer world, and that less carbon (and nutrients) then reaches the inner and deep ocean. This extension to the cGENIE.muffin Earth system model provides it with additional capabilities in addressing marine carbon cycling in warmer past and future worlds

    Late Neogene evolution of modern deep-dwelling plankton

    Get PDF
    The fossil record of marine microplankton provides insights into the evolutionary drivers which led to the origin of modern deep-water plankton, one of the largest components of ocean biomass. We use global abundance and biogeographic data, combined with depth habitat reconstructions, to determine the environmental mechanisms behind speciation in two groups of pelagic microfossils over the past 15 Myr. We compare our microfossil datasets with water column profiles simulated in an Earth system model. We show that deep-living planktonic foraminiferal (zooplankton) and calcareous nannofossil (mixotroph phytoplankton) species were virtually absent globally during the peak of the middle Miocene warmth. The evolution of deep-dwelling planktonic foraminifera started from subpolar–mid-latitude species, during late Miocene cooling, via allopatry. Deep-dwelling species subsequently spread towards lower latitudes and further diversified via depth sympatry, establishing modern communities stratified hundreds of metres down the water column. Similarly, sub-euphotic zone specialist calcareous nannofossils become a major component of tropical and sub-tropical assemblages during the latest Miocene to early Pliocene. Our model simulations suggest that increased organic matter and oxygen availability for planktonic foraminifera, and increased nutrients and light penetration for nannoplankton, favoured the evolution of new deep-water niches. These conditions resulted from global cooling and the associated increase in the efficiency of the biological pump over the last 15 Myr

    What the geological past can tell us about the future of the ocean's twilight zone.

    Get PDF
    Paleontological reconstructions of plankton community structure during warm periods of the Cenozoic (last 66 million years) reveal that deep-dwelling 'twilight zone' (200-1000 m) plankton were less abundant and diverse, and lived much closer to the surface, than in colder, more recent climates. We suggest that this is a consequence of temperature's role in controlling the rate that sinking organic matter is broken down and metabolized by bacteria, a process that occurs faster at warmer temperatures. In a warmer ocean, a smaller fraction of organic matter reaches the ocean interior, affecting food supply and dissolved oxygen availability at depth. Using an Earth system model that has been evaluated against paleo observations, we illustrate how anthropogenic warming may impact future carbon cycling and twilight zone ecology. Our findings suggest that significant changes are already underway, and without strong emissions mitigation, widespread ecological disruption in the twilight zone is likely by 2100, with effects spanning millennia thereafter

    Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance : a retrospective cohort study

    Get PDF
    BACKGROUND : Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drugsusceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistancedetermining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all fi rst-line and second-line drugs for tuberculosis. METHODS : Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identifi ed from the drug-resistance scientifi c literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance. FINDINGS : We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7–93·7) and 98·4% specifi city (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identifi ed among mutations under selection pressure in non-candidate genes. INTERPRETATION : A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically predicted. This approach could be integrated into routine diagnostic workfl ows, phasing out phenotypic drugsusceptibility testing while reporting drug resistance early.Wellcome Trust, National Institute of Health Research, Medical Research Council, and the European Union.http://www.thelancet.com/infectionhb201

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore