131 research outputs found

    Changes in Curricula Design and the Effect on Transfer of Learning in Remedial Mathematics Students

    Get PDF
    The purposes of this study included examination of curricular and instructional integration of mathematics and the sciences in a basic mathematics/elementary algebra course to see if it would (1) result in greater achievement in mathematics, (2) result in greater achievement in chemistry, (3) encourage transfer of learning from mathematics to chemistry, (4) result in more positive attitudes towards mathematics, and (5) would lessen anxiety levels towards mathematics. This study, conducted at Chattanooga State Technical Community College during the 1991-92 academic year, used a control/experimental design. Students who expressed an interest in nursing or another allied health field requiring basic chemistry, and who were required to enroll in a basic mathematics/elementary algebra course, were enrolled in one of two designated mathematics sections taught by the researcher. Students who completed one of these designated sections during the 1991 fall semester and who completed basic chemistry during the 1992 spring semester became the subjects of the study. The control group was taught using a traditional approach, with no particular steps being taken to integrate mathematics and science and without the use of the calculator. The experimental group was taught with a curriculum designed to use the calculator extensively and to encourage integration of mathematics and science. In order to determine whether the results were statistically significant, analyses of the date were made using the Student\u27s t distribution. No difference in achievement in either basic mathematics or basic chemistry was found between the control and the experimental groups; nor was any difference in attitude concerning mathematics and in anxiety levels about mathematics found between the two groups. By the end of the semester, both groups did show a significant decrease in anxiety level towards mathematics. The hypothesis regarding transfer of mathematical skills from basic mathematics to basic chemistry could not be examined because there was not a large enough sample remaining after attrition during the semesters to provide for statistical analysis

    Wild birds respond to flockmate loss by increasing their social network associations to others

    Get PDF
    Understanding the consequences of losing individuals from wild populations is a current and pressing issue, yet how such loss influences the social behaviour of the remaining animals is largely unexplored. Through combining the automated tracking of winter flocks of over 500 wild great tits (Parus major) with removal experiments, we assessed how individuals’ social network positions responded to the loss of their social associates. We found that the extent of flockmate loss that individuals experienced correlated positively with subsequent increases in the number of their social associations, the average strength of their bonds and their overall connectedness within the social network (defined as summed edge weights). Increased social connectivity was not driven by general disturbance or changes in foraging behaviour, but by modifications to fine-scale social network connections in response to losing their associates. Therefore, the reduction in social connectedness expected by individual loss may be mitigated by increases in social associations between remaining individuals. Given that these findings demonstrate rapid adjustment of social network associations in response to the loss of previous social ties, future research should examine the generality of the compensatory adjustment of social relations in ways that maintain the structure of social organizationThe work was funded by an NERC studentship and EGI Research Fellowship to J.A.F. and grants from the ERC and BBSRC (AdG 250164; BB/L006081/1) to B.C.S

    Stochastic population models hindcast population trajectory and breeding history of an endangered parrot

    Get PDF
    Understanding the population dynamics of endangered species is crucial to their conservation. Stochastic population models can be used to explore factors involved in population change, contributing to the understanding of a species’ population dynamics. Norfolk Island Green Parrots Cyanoramphus cookii have undergone significant population fluctuations in the last 50 years. Since 2013, most nestlings hatched in managed, predator-proofed nest sites have been individually marked. These nests have been considered the primary source of population growth. Yet, in 2021, most adult birds were unmarked, raising the question of whether unmarked parrots have been entering the population through undetected breeding in natural nests, and to what extent. We modelled Green Parrot population growth between 2013 and 2021 using stochastic population models in VORTEX to explore the potential dynamics involved in the observed population growth. Basic models involving breeding only in managed nests produced population estimates between 158 and 266, whereas more complex models that included breeding in unmanaged nests, and accounted for the large proportion of unmarked birds, produced population estimates between 360 and 1,041. We conclude that natural nests may have played a significant role in the population growth since 2013. If this is the case, broad-scale predator control may be largely responsible. Furthermore, our study shows how population models may be used to infer underlying demographic processes and inform conservation strategies, even in instances of data scarcity. Our method can be applied to other threatened species, and may prove particularly useful for small populations whose population dynamics remain unclear

    Phenotypic Divergence among West European Populations of Reed Bunting Emberiza schoeniclus: The Effects of Migratory and Foraging Behaviours

    Get PDF
    [EN] Divergent selection and local adaptation are responsible for many phenotypic differences between populations, potentially leading to speciation through the evolution of reproductive barriers. Here we evaluated the morphometric divergence among west European populations of Reed Bunting in order to determine the extent of local adaptation relative to two important selection pressures often associated with speciation in birds: migration and diet. We show that, as expected by theory, migratory E. s. schoeniclus had longer and more pointed wings and a slightly smaller body mass than the resident subspecies, with the exception of E. s. lusitanica, which despite having rounder wings was the smallest of all subspecies. Tail length, however, did not vary according to the expectation (shorter tails in migrants) probably because it is strongly correlated with wing length and might take longer to evolve. E. s. witherbyi, which feed on insects hiding inside reed stems during the winter, had a very thick, stubby bill. In contrast, northern populations, which feed on seeds, had thinner bills. Despite being much smaller, the southern E. s. lusitanica had a significantly thicker, longer bill than migratory E. s. schoeniclus, whereas birds from the UK population had significantly shorter, thinner bills. Geometric morphometric analyses revealed that the southern subspecies have a more convex culmen than E. s. schoeniclus, and E. s. lusitanica differs from the nominate subspecies in bill shape to a greater extent than in linear bill measurements, especially in males. Birds with a more convex culmen are thought to exert a greater strength at the bill tip, which is in agreement with their feeding technique. Overall, the three subspecies occurring in Western Europe differ in a variety of traits following the patterns predicted from their migratory and foraging behaviours, strongly suggesting that these birds have became locally adapted through natural selection.Some fieldwork in Portugal was supported financially by ICETA, University of Porto. LG and JMN were supported financially by the Portuguese Foundation for Science and Technology through grants SFRH/BD/64645/2009 and SFRH/BPD/40667/2007, respectively. JSM and EJB were funded by the projects CGL2005-02041/BOS and CGL2010-21933-C02-02 granted by Ministerio de Ciencia e Innovacion (Spain). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Neto, JM.; Gordinho, L.; Belda, EJ.; Marín Villora, M.; Monrós González, JS.; Fearon, P.; Crates, R. (2013). Phenotypic Divergence among West European Populations of Reed Bunting Emberiza schoeniclus: The Effects of Migratory and Foraging Behaviours. PLoS ONE. 8(5):1-11. https://doi.org/10.1371/journal.pone.0063248S11185Van Doorn, G. S., Edelaar, P., & Weissing, F. J. (2009). On the Origin of Species by Natural and Sexual Selection. Science, 326(5960), 1704-1707. doi:10.1126/science.1181661Winker, K. (2010). Chapter 1: Subspecies Represent Geographically Partitioned Variation, A Gold Mine of Evolutionary Biology, and a Challenge for Conservation. Ornithological Monographs, 67(1), 6-23. doi:10.1525/om.2010.67.1.6Servedio, M. R., Doorn, G. S. V., Kopp, M., Frame, A. M., & Nosil, P. (2011). Magic traits in speciation: ‘magic’ but not rare? Trends in Ecology & Evolution, 26(8), 389-397. doi:10.1016/j.tree.2011.04.005Via, S. (2009). Natural selection in action during speciation. Proceedings of the National Academy of Sciences, 106(Supplement_1), 9939-9946. doi:10.1073/pnas.0901397106Shaw, K. L., & Mullen, S. P. (2011). Genes versus phenotypes in the study of speciation. Genetica, 139(5), 649-661. doi:10.1007/s10709-011-9562-4Bearhop, S. (2005). Assortative Mating as a Mechanism for Rapid Evolution of a Migratory Divide. Science, 310(5747), 502-504. doi:10.1126/science.1115661Pérez-Tris, J., Ramírez, Á., & Tellería, J. L. (2003). Are Iberian ChiffchaffsPhylloscopus (collybita) brehmiilong-distance migrants? An analysis of flight-related morphology. Bird Study, 50(2), 146-152. doi:10.1080/00063650309461306Irwin DE, Irwin JH (2005) Siberian migratory divides. The role of seasonal migration in speciation. In: Greenberg R, Marra PP, editors. Birds of Two Worlds. Johns Hopkins University Press, Baltimore, Maryland. 27–40.BENSCH, S., GRAHN, M., MÜLLER, N., GAY, L., & ÅKESSON, S. (2009). Genetic, morphological, and feather isotope variation of migratory willow warblers show gradual divergence in a ring. Molecular Ecology, 18(14), 3087-3096. doi:10.1111/j.1365-294x.2009.04210.xRohwer, S., & Irwin, D. E. (2011). Molt, Orientation, and Avian Speciation. The Auk, 128(2), 419-425. doi:10.1525/auk.2011.10176Grant, P. R. (2002). Unpredictable Evolution in a 30-Year Study of Darwin’s Finches. Science, 296(5568), 707-711. doi:10.1126/science.1070315Ryan, P. G., Bloomer, P., Moloney, C. L., Grant, T. J., & Delport, W. (2007). Ecological Speciation in South Atlantic Island Finches. Science, 315(5817), 1420-1423. doi:10.1126/science.1138829Benkman, C. W. (2003). DIVERGENT SELECTION DRIVES THE ADAPTIVE RADIATION OF CROSSBILLS. Evolution, 57(5), 1176-1181. doi:10.1111/j.0014-3820.2003.tb00326.xFunk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Sciences, 103(9), 3209-3213. doi:10.1073/pnas.0508653103Cramp S, Perrins CM (1994) Handbook of the birds of Europe, the Middle East and North Africa. The birds of the Western Palaearctic. Volume 9: Buntings and new world warblers. Oxford University Press, Oxford. 522 p.Byers C, Curson J, Olson U (1995) Sparrows and Buntings: A Guide to the Sparrows and Buntings of North America and the World. Houghton Mifflin, New York.MATESSI, G., GRIGGIO, M., & PILASTRO, A. (2002). The geographical distribution of populations of the large-billed subspecies of reed bunting matches that of its main winter food. Biological Journal of the Linnean Society, 75(1), 21-26. doi:10.1046/j.1095-8312.2002.00003.xOrłowski, G., & Czarnecka, J. (2007). Winter diet of reed bunting Emberiza schoeniclus in fallow and stubble fields. Agriculture, Ecosystems & Environment, 118(1-4), 244-248. doi:10.1016/j.agee.2006.05.026Clements JF, Schulenberg TS, Iliff MJ, Sullivan BL, Wood CL, et al.. (2011) The Clements checklist of birds of the world: Version 6.6. Available: https://www.birds.cornell.edu/clementschecklist/download/del Hoyo J, Elliot A, Christie DA (ed) (2011) Handbook of the birds of the world. Vol. 16. Lynx edicions, Barcelona. 894 p.Steinbacher, F. (1930). Bemerkungen zur Systematik der Rohrammern,Emberiza schoeniclus (L.). Journal für Ornithologie, 78(4), 471-487. doi:10.1007/bf01953149Atienza JC (2006) El escribano palustre em España. I Censo nacional (2005). SEO/BirdLife, Madrid. 72 p.Copete, J. L., Mariné, R., Bigas, D., & Martínez-Vilalta, A. (1999). Differences in wing shape between sedentary and migratory Reed BuntingsEmberiza schoeniclus. Bird Study, 46(1), 100-103. doi:10.1080/00063659909461119GRAPPUTO, A., PILASTRO, A., & MARIN, G. (1998). Genetic variation and bill size dimorphism in a passerine bird, the reed bunting Emberiza schoeniclus. Molecular Ecology, 7(9), 1173-1182. doi:10.1046/j.1365-294x.1998.00441.xZink, R. M., Pavlova, A., Drovetski, S., & Rohwer, S. (2008). Mitochondrial phylogeographies of five widespread Eurasian bird species. Journal of Ornithology, 149(3), 399-413. doi:10.1007/s10336-008-0276-zKvist, L., Ponnikas, S., Belda, E. J., Encabo, I., Martínez, E., Onrubia, A., … Monrós, J. S. (2011). Endangered subspecies of the Reed Bunting (Emberiza schoeniclus witherbyi and E. s. lusitanica) in Iberian Peninsula have different genetic structures. Journal of Ornithology, 152(3), 681-693. doi:10.1007/s10336-011-0646-9Matessi, G., Dabelsteen, T., & Pilastro, A. (2000). Responses to playback of different subspecies songs in the Reed Bunting Emberiza schoeniclus. Journal of Avian Biology, 31(1), 96-101. doi:10.1034/j.1600-048x.2000.310113.xPodos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature, 409(6817), 185-188. doi:10.1038/35051570Hedenström, A. (2007). Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1490), 287-299. doi:10.1098/rstb.2007.2140MILÁ, B., WAYNE, R. K., & SMITH, T. B. (2008). ECOMORPHOLOGY OF MIGRATORY AND SEDENTARY POPULATIONS OF THE YELLOW-RUMPED WARBLER (DENDROICA CORONATA). The Condor, 110(2), 335-344. doi:10.1525/cond.2008.8396Keller, L. F., Grant, P. R., Grant, B. R., & Petren, K. (2001). Heritability of morphological traits in Darwin’s Finches: misidentified paternity and maternal effects. Heredity, 87(3), 325-336. doi:10.1046/j.1365-2540.2001.00900.xTarka, M., Åkesson, M., Beraldi, D., Hernández-Sánchez, J., Hasselquist, D., Bensch, S., & Hansson, B. (2010). A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers. Proceedings of the Royal Society B: Biological Sciences, 277(1692), 2361-2369. doi:10.1098/rspb.2010.0033Svensson L (1992) Identification guide to European passerines, 4th edition. Lars Svensson, Stockholm.De La Puente, J., & Seoane, J. (2001). The use of primary abrasion for ageing reed buntingsemberiza schoeniclus. Ringing & Migration, 20(3), 221-223. doi:10.1080/03078698.2001.9674249Jenni, L., & Winkler, R. (1989). The feather-length of small passerines: a measurement for wing-length in live birds and museum skins. Bird Study, 36(1), 1-15. doi:10.1080/00063658909476996Gosler, A. G., Greenwood, J. J. D., Baker, J. K., & Davidson, N. C. (1998). The field determination of body size and condition in passerines: a report to the British Ringing Committee. Bird Study, 45(1), 92-103. doi:10.1080/00063659809461082James Rohlf, F., & Marcus, L. F. (1993). A revolution morphometrics. Trends in Ecology & Evolution, 8(4), 129-132. doi:10.1016/0169-5347(93)90024-jMarcus LF, Corti M, Loy A, Naylor GJP, Slice DE (eds) (1996) Advances in Morphometrics. NATO ASI Series A: Life Sciences. Plenum Press, New York.Klingenberg CP (1996) Multivariate allometry. In: Marcus LF, Corti M, Loy A, Naylor G, Slice DE, editors. Advances in Morphometrics, Plenum Press, New York. 23–49.Zelditch M, Swiderski D, Sheets H, Fink W (2004) Geometric Morphometrics for Biologists: A Primer. Elsevier Academic Press, London.FOSTER, D. J., PODOS, J., & HENDRY, A. P. (2007). A geometric morphometric appraisal of beak shape in Darwin’s finches. Journal of Evolutionary Biology, 21(1), 263-275. doi:10.1111/j.1420-9101.2007.01449.xNavarro, J., Kaliontzopoulou, A., & González-Solís, J. (2009). Sexual dimorphism in bill morphology and feeding ecology in Cory’s shearwater (Calonectris diomedea). Zoology, 112(2), 128-138. doi:10.1016/j.zool.2008.05.001Berns, C. M., & Adams, D. C. (2010). Bill Shape and Sexual Shape Dimorphism between two Species of Temperate Hummingbirds: Black-Chinned Hummingbird (Archilochusalexandri) and Ruby-Throated Hummingbird (A. colubris). The Auk, 127(3), 626-635. doi:10.1525/auk.2010.09213Rohlf FJ (2010) Morphometrics at SUNY Stony Brook. Available: http://life.bio.sunysb.edu/morphRohlf FJ (2010) tps Utility program. Version 1.46. Department of Ecology and Evolution, State University of New York at Stony Brook.Kaliontzopoulou, A., Carretero, M. A., & Llorente, G. A. (2007). Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation inPodarcis lizards. Journal of Morphology, 268(2), 152-165. doi:10.1002/jmor.10494Rohlf FJ (2010) tpsDig. Version 2.16. Department of Ecology and Evolution, State University of New York at Stony Brook.Rohlf FJ (2003) tpsSmall, version 1.20. Department of Ecology and Evolution, State University of New York at Stony Brook.Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Systematic Zoology, 39(1), 40. doi:10.2307/2992207Rohlf, F. J. (1999). Shape Statistics: Procrustes Superimpositions and Tangent Spaces. Journal of Classification, 16(2), 197-223. doi:10.1007/s003579900054Rohlf FJ (2010) tpsRelw, relative warps analysis, version 1.49. Department of Ecology and Evolution, State University of New York at Stony Brook.LLEONART, J., SALAT, J., & TORRES, G. J. (2000). Removing Allometric Effects of Body Size in Morphological Analysis. Journal of Theoretical Biology, 205(1), 85-93. doi:10.1006/jtbi.2000.2043IBM Corp. (2011) IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.BALDWIN, M. W., WINKLER, H., ORGAN, C. L., & HELM, B. (2010). Wing pointedness associated with migratory distance in common-garden and comparative studies of stonechats (Saxicola torquata). Journal of Evolutionary Biology, 23(5), 1050-1063. doi:10.1111/j.1420-9101.2010.01975.xFörschler, M. I., & Bairlein, F. (2011). Morphological Shifts of the External Flight Apparatus across the Range of a Passerine (Northern Wheatear) with Diverging Migratory Behaviour. PLoS ONE, 6(4), e18732. doi:10.1371/journal.pone.0018732Wernham CV, Toms MP, Marchant JH, Clark JA, Siriwardena GM, et al.. (eds) (2002) The Migration Atlas: movements of the birds of Britain and Ireland. T. & A.D. Poyser, London.Tarka M (2012) Evolutionary dynamics of migration and breeding in wild birds: genetic architecture, sexual conflicts and evolutionary constrains. PhD dissertation, Lund, University, Sweden. 264 p.Greenberg, R., & Olsen, B. (2010). Bill size and dimorphism in tidal-marsh sparrows: island-like processes in a continental habitat. Ecology, 91(8), 2428-2436. doi:10.1890/09-1136.1Cooper, I. A., Gilman, R. T., & Boughman, J. W. (2011). SEXUAL DIMORPHISM AND SPECIATION ON TWO ECOLOGICAL COINS: PATTERNS FROM NATURE AND THEORETICAL PREDICTIONS. Evolution, 65(9), 2553-2571. doi:10.1111/j.1558-5646.2011.01332.xGreenberg, R., Cadena, V., Danner, R. M., & Tattersall, G. (2012). Heat Loss May Explain Bill Size Differences between Birds Occupying Different Habitats. PLoS ONE, 7(7), e40933. doi:10.1371/journal.pone.0040933Greenberg, R., Danner, R., Olsen, B., & Luther, D. (2012). High summer temperature explains bill size variation in salt marsh sparrows. Ecography, 35(2), 146-152. doi:10.1111/j.1600-0587.2011.07002.xGreenberg, R., & Danner, R. M. (2012). THE INFLUENCE OF THE CALIFORNIA MARINE LAYER ON BILL SIZE IN A GENERALIST SONGBIRD. Evolution, 66(12), 3825-3835. doi:10.1111/j.1558-5646.2012.01726.xBallentine, B., & Greenberg, R. (2010). Common Garden Experiment Reveals Genetic Control of Phenotypic Divergence between Swamp Sparrow Subspecies That Lack Divergence in Neutral Genotypes. PLoS ONE, 5(4), e10229. doi:10.1371/journal.pone.001022

    Genetic diversity and inbreeding in an endangered island-dwelling parrot population following repeated population bottlenecks

    Get PDF
    Genetic diversity and population structure can have important implications for the management of threatened species. This is particularly true for small, isolated populations that have experienced significant declines or population bottlenecks. The Norfolk Island green parrot Cyanoramphus cookii is an endangered species at risk of inbreeding and loss of genetic diversity due to its restricted range and the population bottlenecks experienced in recent decades. To assess the severity of inbreeding and loss of genetic diversity in the population we analyzed single nucleotide polymorphisms (SNPs) for 157 unique genetic samples collected from nestlings and randomly captured adult birds between 2015 and 2022. We also assessed the population for genetic structure, calculated sex ratios, and looked for evidence of past population bottlenecks. Our analysis revealed that 17.83% of individuals sampled were highly inbred (F > 0.125), although expected heterozygosity (HE) did not significantly differ from observed heterozygosity (HO) and the average inbreeding coefficient was low. The estimated effective population size (Ne) was 43.8 and we found no evidence of genetic structure. Demographic simulations provided support for scenarios including multiple population bottlenecks, when compared to those with a single population bottleneck or no past bottlenecks. We discuss the implications of our findings for the future management of the species including any potential attempt to establish an insurance population via translocation. Our study highlights the importance of considering population genetics when determining appropriate management actions for threatened species and the need to assess non-model species on an individual basis

    An Arduino-Based RFID Platform for Animal Research

    Get PDF
    Radio Frequency Identification (RFID) technology has been broadly applied in the biological sciences to yield new insights into behavior, cognition, population biology, and distributions. RFID systems entail wireless communication between small tags that, when stimulated by an appropriate radio frequency transmission, emit a weak, short-range wireless signal that conveys a unique ID number. These tags, which often operate without a battery, can be attached to animals such that their presence at a particular location can be detected by an RFID reader. This paper describes an RFID data-logging system that can serve as the core for a wide variety of field and laboratory applications for monitoring the activities of individual animals. The core electronics are modeled on an Arduino circuit board, which is a hobbyist electronics system. Users can customize the hardware and software to accommodate their needs. We demonstrate the utility of the system with cursory descriptions of three real-world research applications. The first is a large-scale deployment that was used to examine individual breeding behaviors across four local populations of Wood Ducks. The second application employed an array of RFID-enabled bird feeders that allowed for tests of spatial cognition. Third, we describe a nest-box monitoring system that both records visits from breeding birds and administers experimental treatments, such as increasing temperature or playing audio recordings, in accordance to the presence/absence of individual birds. With these examples we do not attempt to relate details with regard to research findings; rather our intent is to demonstrate some of the possibilities enabled by our low-cost RFID system. Detailed descriptions, design files, and code are made available by means of the Open Science Framework.Open Access fees paid for in whole or in part by the University of Oklahoma LibrariesYe

    AVONET: morphological, ecological and geographical data for all birds

    Get PDF
    Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species‐level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity

    COMPARA TIVE STUDY OF MANAGEMENT OF HUMERAL DIAPHYSEAL FRACTURES BY DCP PLATE AND IMIL NAIL

    No full text

    Ecology and Conservation of the Regent Honeyeater

    Get PDF
    In the age of the Anthropocene, avian diversity loss is occurring at an unprecendented rate. Australia is not immune to the Global extinction crisis, given pervasive threats from habitat loss, climate change and introduced species. High variability in Australia’s climatic conditions has led many birds to evolve mobile life-histories, presenting unique challenges for their conservation. The nomadic, critically endangered regent honeyeater Anthochaera phrygia has suffered a severe population decline since the mid-19th century. The contemporary population is estimated to consist of 350-500 individuals, distributed across 600,000 km2 of woodland in south-east Australia. The species tracks nectar resources at large spatial scales. Small population size, vast range and irregular movement patterns of the regent honeyeater have hampered understanding of the drivers of ongoing population decline. Lack of ecological data has prevented efforts to implement targeted management actions to conserve the wild population. This thesis aims to obtain contemporary ecological data to inform efforts to prevent extinction of the regent honeyeater. In chapter 2, we develop a monitoring strategy to locate breeding regent honeyeaters using a survey protocol that accounts for their rarity and mobility. Although regent honeyeaters are rare, they are not cryptic. In chapter 3, we review the literature on Allee effects to evaluate, based on life-history traits, the susceptibility of Australia’s critically endangered birds to inverse density dependent population growth. We use the regent honeyeater to show how a lack of empirical evidence of Allee effects need not preclude efforts to account for their existence through precautionary conservation. In chapter 4, we present the contemporary breeding biology of regent honeyeaters. We provide evidence that nest success and productivity have declined over recent decades, nest success is highly spatially variable, predation is the main cause of nest failure and there is a male bias to the adult sex ratio. In chapter 5, we experimentally removed noisy miners, a major competitor and known cause of nesting failure, from a regent honeyeater breeding site. We monitored recolonisation of noisy miners following their removal, the co-occurrence of noisy miners and regent honeyeaters during nesting, and the response of the songbird community to miner removal. We significantly decreased noisy miner abundance at a time and location to benefit breeding regent honeyeaters. Abundance and species richness of the songbird community also increased. In chapter 6, we evaluate the genomic impact of severe population decline in regent honeyeaters. We find very weak population structure in the population prior to its rapid decline, that the population comprises a single conservation unit, and that some genetic diversity loss has occurred over the past 3 decades. In combination, effort and effective sampling can generate crucial population data to inform better conservation of rare and highly mobile species that may otherwise be dismissed as too challenging to study in detail
    corecore