391 research outputs found
A New Acoustic Portal into the Odontocete Ear and Vibrational Analysis of the Tympanoperiotic Complex
Global concern over the possible deleterious effects of noise on marine organisms was catalyzed when toothed whales stranded and died in the presence of high intensity sound. The lack of knowledge about mechanisms of hearing in toothed whales prompted our group to study the anatomy and build a finite element model to simulate sound reception in odontocetes. The primary auditory pathway in toothed whales is an evolutionary novelty, compensating for the impedance mismatch experienced by whale ancestors as they moved from hearing in air to hearing in water. The mechanism by which high-frequency vibrations pass from the low density fats of the lower jaw into the dense bones of the auditory apparatus is a key to understanding odontocete hearing. Here we identify a new acoustic portal into the ear complex, the tympanoperiotic complex (TPC) and a plausible mechanism by which sound is transduced into the bony components. We reveal the intact anatomic geometry using CT scanning, and test functional preconceptions using finite element modeling and vibrational analysis. We show that the mandibular fat bodies bifurcate posteriorly, attaching to the TPC in two distinct locations. The smaller branch is an inconspicuous, previously undescribed channel, a cone-shaped fat body that fits into a thin-walled bony funnel just anterior to the sigmoid process of the TPC. The TPC also contains regions of thin translucent bone that define zones of differential flexibility, enabling the TPC to bend in response to sound pressure, thus providing a mechanism for vibrations to pass through the ossicular chain. The techniques used to discover the new acoustic portal in toothed whales, provide a means to decipher auditory filtering, beam formation, impedance matching, and transduction. These tools can also be used to address concerns about the potential deleterious effects of high-intensity sound in a broad spectrum of marine organisms, from whales to fish
How large should whales be?
The evolution and distribution of species body sizes for terrestrial mammals
is well-explained by a macroevolutionary tradeoff between short-term selective
advantages and long-term extinction risks from increased species body size,
unfolding above the 2g minimum size induced by thermoregulation in air. Here,
we consider whether this same tradeoff, formalized as a constrained
convection-reaction-diffusion system, can also explain the sizes of fully
aquatic mammals, which have not previously been considered. By replacing the
terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial
mammal tradeoff model accurately predicts, with no tunable parameters, the
observed body masses of all extant cetacean species, including the 175,000,000g
Blue Whale. This strong agreement between theory and data suggests that a
universal macroevolutionary tradeoff governs body size evolution for all
mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus
be attributed mainly to the increased convective heat loss is water, which
shifts the species size distribution upward and pushes its right tail into
ranges inaccessible to terrestrial mammals. Under this macroevolutionary
tradeoff, the largest expected species occurs where the rate at which
smaller-bodied species move up into large-bodied niches approximately equals
the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table
Simulating the effect of high-intensity sound on cetaceans: Modeling approach and a case study for Cuvierâs beaked whale ( Ziphius cavirostris
A finite element model is formulated to study the steady-state vibration response of the anatomy of a whale (Cetacea) submerged in seawater. The anatomy was reconstructed from a combination of two-dimensional (2D) computed tomography (CT) scan images, identification of Hounsfield units with tissue types, and mapping of mechanical properties. A partial differential equation model describes the motion of the tissues within a Lagrangean framework. The computational model was applied to the study of the response of the tissues within the head of a neonate Cuvier's beaked whale Ziphius cavirostris. The characteristics of the sound stimulus was a continuous wave excitation at 3500 Hz and 180 dB re: 1 mu Pa received level, incident as a plane wave. We model the beaked whale tissues embedded within a volume of seawater. To account for the finite dimensions of the computational volume, we increased the damping for viscous shear stresses within the water volume, in an attempt to reduce the contribution of waves reflected from the boundaries of the computational box. The mechanical response of the tissues was simulated including: strain amplitude; dissipated power; and pressure. The tissues are not likely to suffer direct mechanical or thermal damage, within the range of parameters tested. (c) 2006 Acoustical Society of America
Engineering serendipity: high-throughput discovery of materials that resist bacterial attachment
Controlling the colonisation of materials by microorganisms is important in a wide range of industries and clinical settings. To date, the underlying mechanisms that govern the interactions of bacteria with material surfaces remain poorly understood, limiting the ab initio design and engineering of biomaterials to control bacterial attachment. Combinatorial approaches involving high-throughput screening have emerged as key tools for identifying materials to control bacterial attachment. The hundreds of different materials assessed using these methods can be carried out with the aid of computational modelling. This approach can develop an understanding of the rules used to predict bacterial attachment to surfaces of non-toxic synthetic materials. Here we outline our view on the state of this field and the challenges and opportunities in this area for the coming years
Physical constraints of cultural evolution of dialects in killer whales
Data collection was supported by a variety of organizations, including the Russian Fund for the Fundamental Research (Grant No. 15-04-05540), the Rufford Small Grants Fund, Whale and Dolphin Conservation, the Fundação para a CiĂȘncia e a Tecnologia (Grant No. SFRH/BD/30303/2006), Russell Trust Award of the University of St. Andrews, the Office of Naval Research, the Icelandic Research Fund (i. RannsĂłknasjóður), the National Geographic Society Science and Exploration Europe (Grant No. GEFNE65-12), Vancouver Aquarium Marine Science Centre, the Canadian Ministry of Fisheries and Oceans, and the North Gulf Oceanic Society.Odontocete sounds are produced by two pairs of phonic lips situated in soft nares below the blowhole; the right pair is larger and is more likely to produce clicks, while the left pair is more likely to produce whistles. This has important implications for the cultural evolution of delphinid sounds: the greater the physical constraints, the greater the probability of random convergence. In this paper the authors examine the call structure of eight killer whale populations to identify structural constraints and to determine if they are consistent among all populations. Constraints were especially pronounced in two-voiced calls. In the calls of all eight populations, the lower component of two-voiced (biphonic) calls was typically centered below 4âkHz, while the upper component was typically above that value. The lower component of two-voiced calls had a narrower frequency range than single-voiced calls in all populations. This may be because some single-voiced calls are homologous to the lower component, while others are homologous to the higher component of two-voiced calls. Physical constraints on the call structure reduce the possible variation and increase the probability of random convergence, producing similar calls in different populations.PostprintPeer reviewe
Cave spiders choose optimal environmental factors with respect to the generated entropy when laying their cocoon
The choice of a suitable area to spiders where to lay eggs is promoted in terms of Darwinian fitness. Despite its importance, the underlying factors behind this key decision are generally poorly understood. Here, we designed a multidisciplinary study based both on in-field data and laboratory experiments focusing on the European cave spider Meta menardi (Araneae, Tetragnathidae) and aiming at understanding the selective forces driving the female in the choice of the depositional area. Our in-field data analysis demonstrated a major role of air velocity and distance from the cave entrance within a particular cave in driving the female choice. This has been interpreted using a model based on the Entropy Generation Minimization - EGM - method, without invoking best fit parameters and thanks to independent lab experiments, thus demonstrating that the female chooses the depositional area according to minimal level of thermo-fluid-dynamic irreversibility. This methodology may pave the way to a novel approach in understanding evolutionary strategies for other living organisms
An Integrated Ecosystem Approach for Assessing the Potential Role of Cultivated Bivalve Shells as Part of the Carbon Trading System
The role of bivalve mariculture in the CO2 cycle has been commonly evaluated as the balance between respiration, shell calcium carbonate sequestration and CO2 release during biogenic calcification. However, this approach neglects the ecosystem implications of cultivating bivalves at high densities, e.g. the impact on phytoplankton dynamics and benthic-pelagic coupling, which can significantly contribute to the CO2 cycle. Therefore, an ecosystem approach that accounts for the trophic interactions of bivalve aquaculture, including dissolved and particulate organic and inorganic carbon cycling, is needed to provide a rigorous assessment of the role of bivalve mariculture in the CO2 cycle. On the other hand, the discussion about the inclusion of shells of cultured bivalves into the carbon trading system should be framed within the context of ecosystem goods and services. Humans culture bivalves with the aim of producing food, not sequestering CO2 in their shells, therefore the main ecosystem good provided by bivalve aquaculture is meat production, and shells should be considered as by-products of this human activity. This reasoning provides justification for dividing up respired CO2 between meat and shell when constructing a specific bivalve CO2 budget for potential use of bivalve shells in the carbon trading system. Thus, an integrated ecosystem approach, as well as an understanding of the ecosystems goods and services of bivalve aquaculture, are 2 essential requisites for providing a reliable assessment of the role of bivalve shells in the CO2 cycle
Alcohol use among university students in Sweden measured by an electronic screening instrument
<p>Abstract</p> <p>Background</p> <p>Electronic-based alcohol screening and brief interventions for university students with problem drinking behaviours forms an important means by which to identify risky drinkers.</p> <p>Methods</p> <p>In this study an e-SBI project was implemented to assess drinking patterns, and to provide personalised feedback about alcohol consumption and related health problems, to students in a Swedish university. In this study, third semester university students (n = 2858) from all faculties (colleges) at the University were invited to participate in e-SBI screenings. This study employed a randomised controlled trial, with respondents having a equal chance of being assigned to a limited, or full-feedback response.</p> <p>Results</p> <p>The study shows that high risk drinkers tend to underestimate their own consumption compared to others, and that these high risk drinkers experience more negative consequences after alcohol intake, than other respondents. There was a strong belief, for both high- and low-risk drinkers, that alcohol helped celebrations be more festive. This study also confirms findings from other study locations that while males drank more than females in our study population; females reached the same peak alcohol blood concentrations as males.</p> <p>Conclusion</p> <p>Obtaining clear and current information on drinking patterns demonstrated by university students can help public health officials, university administration, and local health care providers develop appropriate prevention and treatment strategies.</p
Ecosystem models of bivalve aquaculture: Implications for supporting goods and services
In this paper we focus on the role of ecosystem models in improving our understanding of the complex relationships between bivalve farming and the dynamics of lower trophic levels. To this aim, we review spatially explicit models of phytoplankton impacted by bivalve grazing and discuss the results of three case studies concerning an estuary (Baie des Veys, France), a bay, (Tracadie Bay, Prince Edward Island, Canada) and an open coastal area (Adriatic Sea, Emilia-Romagna coastal area, Italy). These models are intended to provide insight for aquaculture management, but their results also shed light on the spatial distribution of phytoplankton and environmental forcings of primary production. Even though new remote sensing technologies and remotely operated in situ sensors are likely to provide relevant data for assessing some the impacts of bivalve farming at an ecosystem scale, the results here summarized indicate that ecosystem modelling will remain the main tool for assessing ecological carrying capacity and providing management scenarios in the context of global drivers, such as climate change
- âŠ