37 research outputs found

    Genetic variation associated with circulating monocyte count in the eMERGE Network

    Get PDF
    With white blood cell count emerging as an important risk factor for chronic inflammatory diseases, genetic associations of differential leukocyte types, specifically monocyte count, are providing novel candidate genes and pathways to further investigate. Circulating monocytes play a critical role in vascular diseases such as in the formation of atherosclerotic plaque. We performed a joint and ancestry-stratified genome-wide association analyses to identify variants specifically associated with monocyte count in 11 014 subjects in the electronic Medical Records and Genomics Network. In the joint and European ancestry samples, we identified novel associations in the chromosome 16 interferon regulatory factor 8 (IRF8) gene (P-value = 2.78×10(−16), ÎČ = −0.22). Other monocyte associations include novel missense variants in the chemokine-binding protein 2 (CCBP2) gene (P-value = 1.88×10(−7), ÎČ = 0.30) and a region of replication found in ribophorin I (RPN1) (P-value = 2.63×10(−16), ÎČ = −0.23) on chromosome 3. The CCBP2 and RPN1 region is located near GATA binding protein2 gene that has been previously shown to be associated with coronary heart disease. On chromosome 9, we found a novel association in the prostaglandin reductase 1 gene (P-value = 2.29×10(−7), ÎČ = 0.16), which is downstream from lysophosphatidic acid receptor 1. This region has previously been shown to be associated with monocyte count. We also replicated monocyte associations of genome-wide significance (P-value = 5.68×10(−17), ÎČ = −0.23) at the integrin, alpha 4 gene on chromosome 2. The novel IRF8 results and further replications provide supporting evidence of genetic regions associated with monocyte count

    Building a transdisciplinary expert consensus on the cognitive drivers of performance under pressure: An international multi-panel Delphi study

    Get PDF
    IntroductionThe ability to perform optimally under pressure is critical across many occupations, including the military, first responders, and competitive sport. Despite recognition that such performance depends on a range of cognitive factors, how common these factors are across performance domains remains unclear. The current study sought to integrate existing knowledge in the performance field in the form of a transdisciplinary expert consensus on the cognitive mechanisms that underlie performance under pressure.MethodsInternational experts were recruited from four performance domains [(i) Defense; (ii) Competitive Sport; (iii) Civilian High-stakes; and (iv) Performance Neuroscience]. Experts rated constructs from the Research Domain Criteria (RDoC) framework (and several expert-suggested constructs) across successive rounds, until all constructs reached consensus for inclusion or were eliminated. Finally, included constructs were ranked for their relative importance.ResultsSixty-eight experts completed the first Delphi round, with 94% of experts retained by the end of the Delphi process. The following 10 constructs reached consensus across all four panels (in order of overall ranking): (1) Attention; (2) Cognitive Control—Performance Monitoring; (3) Arousal and Regulatory Systems—Arousal; (4) Cognitive Control—Goal Selection, Updating, Representation, and Maintenance; (5) Cognitive Control—Response Selection and Inhibition/Suppression; (6) Working memory—Flexible Updating; (7) Working memory—Active Maintenance; (8) Perception and Understanding of Self—Self-knowledge; (9) Working memory—Interference Control, and (10) Expert-suggested—Shifting.DiscussionOur results identify a set of transdisciplinary neuroscience-informed constructs, validated through expert consensus. This expert consensus is critical to standardizing cognitive assessment and informing mechanism-targeted interventions in the broader field of human performance optimization

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: kingdom Orthornavirae: phylum Negarnaviricota)

    Get PDF
    55 PĂĄg.In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through the Laulima Government Solutions, LLC, prime contract with the U.S. National Institute of Allergy and Infec tious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC, under Contract No. HHSN272201800013C. U.J.B. was supported by the Division of Intramural Resarch, NIAID. This work was also funded in part by Contract No. HSHQDC15-C-00064 awarded by DHS S and T for the management and operation of The National Biodefense Analysis and Countermeasures Centre, a federally funded research and development centre operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowl edges support from the Mississippi Agricultural and Forestry Experiment Station (MAFES), USDA-ARS project 58-6066-9-033 and the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch Project, under Accession Number 1021494. The funders had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of the Army, the U.S. Department of Defence, the U.S. Department of Health and Human Services, including the Centres for Disease Control and Prevention, the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S and T), or of the institutions and companies affiliated with the authors. In no event shall any of these entities have any responsibility or liability for any use, misuse, inability to use, or reliance upon the information contained herein. The U.S. departments do not endorse any products or commercial services mentioned in this publication. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S.Government retains a non-exclusive, paid up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.Peer reviewe

    A História da Alimentação: balizas historiogråficas

    Full text link
    Os M. pretenderam traçar um quadro da HistĂłria da Alimentação, nĂŁo como um novo ramo epistemolĂłgico da disciplina, mas como um campo em desenvolvimento de prĂĄticas e atividades especializadas, incluindo pesquisa, formação, publicaçÔes, associaçÔes, encontros acadĂȘmicos, etc. Um breve relato das condiçÔes em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biolĂłgica, a econĂŽmica, a social, a cultural e a filosĂłfica!, assim como da identificação das contribuiçÔes mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histĂłrica, foi ela organizada segundo critĂ©rios morfolĂłgicos. A seguir, alguns tĂłpicos importantes mereceram tratamento Ă  parte: a fome, o alimento e o domĂ­nio religioso, as descobertas europĂ©ias e a difusĂŁo mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rĂĄpido balanço crĂ­tico da historiografia brasileira sobre o tema
    corecore