1,040 research outputs found
The inevitable QSAR renaissance
QSAR approaches, including recent advances in 3D-QSAR, are advantageous during the lead optimization phase of drug discovery and complementary with bioinformatics and growing data accessibility. Hints for future QSAR practitioners are also offered
Evaluation of the Equivalent Slip Modulus of Nailed Connections for Application in Linear Analysis of Plywood Timber Beams
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)The study of the stiffness of laterally loaded semi-rigid connections in plywood-timber beams is justified by the influence that the deformation of the connection has on the overall displacements of the structure. Semi-rigid connections are characterized by the occurrence of a slip between the connected pieces. The characterization of a connection is usually based on an isolated single connector behavior, which is described by its load-slip relationship expressed by the slip modulus, and so it is extended to the group of connectors. Although the method of analysis is well established, the concept of equivalent slip modulus, defined as the slip modulus per unit length of a connection, has not been totally explored. In this study, we focus on the experimental determination of the equivalent slip modulus for mechanically analyzing plywood-timber beams with continuous connections. The results demonstrated that the test is suitable for obtaining experimental values of the equivalent slip modulus.112151157Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP [00/00953-8
Electrically controlled long-distance spin transport through an antiferromagnetic insulator
Spintronics uses spins, the intrinsic angular momentum of electrons, as an
alternative for the electron charge. Its long-term goal is in the development
of beyond-Moore low dissipation technology devices. Recent progress
demonstrated the long-distance transport of spin signals across ferromagnetic
insulators. Antiferromagnetically ordered materials are however the most common
class of magnetic materials with several crucial advantages over ferromagnetic
systems. In contrast to the latter, antiferromagnets exhibit no net magnetic
moment, which renders them stable and impervious to external fields. In
addition, they can be operated at THz frequencies. While fundamentally their
properties bode well for spin transport, previous indirect observations
indicate that spin transmission through antiferromagnets is limited to short
distances of a few nanometers. Here we demonstrate the long-distance, over tens
of micrometers, propagation of spin currents through hematite (\alpha-Fe2O3),
the most common antiferromagnetic iron oxide, exploiting the spin Hall effect
for spin injection. We control the spin current flow by the interfacial
spin-bias and by tuning the antiferromagnetic resonance frequency with an
external magnetic field. This simple antiferromagnetic insulator is shown to
convey spin information parallel to the compensated moment (N\'eel order) over
distances exceeding tens of micrometers. This newly-discovered mechanism
transports spin as efficiently as the net magnetic moments in the best-suited
complex ferromagnets. Our results pave the way to ultra-fast, low-power
antiferromagnet-insulator-based spin-logic devices that operate at room
temperature and in the absence of magnetic fields
Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control
Optical phase estimation is a vital measurement primitive that is used to
perform accurate measurements of various physical quantities like length,
velocity and displacements. The precision of such measurements can be largely
enhanced by the use of entangled or squeezed states of light as demonstrated in
a variety of different optical systems. Most of these accounts however deal
with the measurement of a very small shift of an already known phase, which is
in stark contrast to ab-initio phase estimation where the initial phase is
unknown. Here we report on the realization of a quantum enhanced and fully
deterministic phase estimation protocol based on real-time feedback control.
Using robust squeezed states of light combined with a real-time Bayesian
estimation feedback algorithm, we demonstrate deterministic phase estimation
with a precision beyond the quantum shot noise limit. The demonstrated protocol
opens up new opportunities for quantum microscopy, quantum metrology and
quantum information processing.Comment: 5 figure
Towards a large-scale quantum simulator on diamond surface at room temperature
Strongly-correlated quantum many-body systems exhibits a variety of exotic
phases with long-range quantum correlations, such as spin liquids and
supersolids. Despite the rapid increase in computational power of modern
computers, the numerical simulation of these complex systems becomes
intractable even for a few dozens of particles. Feynman's idea of quantum
simulators offers an innovative way to bypass this computational barrier.
However, the proposed realizations of such devices either require very low
temperatures (ultracold gases in optical lattices, trapped ions,
superconducting devices) and considerable technological effort, or are
extremely hard to scale in practice (NMR, linear optics). In this work, we
propose a new architecture for a scalable quantum simulator that can operate at
room temperature. It consists of strongly-interacting nuclear spins attached to
the diamond surface by its direct chemical treatment, or by means of a
functionalized graphene sheet. The initialization, control and read-out of this
quantum simulator can be accomplished with nitrogen-vacancy centers implanted
in diamond. The system can be engineered to simulate a wide variety of
interesting strongly-correlated models with long-range dipole-dipole
interactions. Due to the superior coherence time of nuclear spins and
nitrogen-vacancy centers in diamond, our proposal offers new opportunities
towards large-scale quantum simulation at room temperatures
Recommended from our members
Biomarker discovery and redundancy reduction towards classification using a multi-factorial MALDI-TOF MS T2DM mouse model dataset
Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics
Bisphosphonate prescribing, persistence and cumulative exposure in Ontario, Canada
Summary: We studied new users of oral bisphosphonates and found that less than half persisted with therapy for 2 years, and interruptions in use were common. During a median observation period of 4.7 years, 10% of patients filled only a single prescription, 37% switched therapies and median cumulative exposure was 2.2 years. Introduction: We sought to describe bisphosphonate prescribing, persistence and cumulative exposure among seniors in Ontario, Canada. Methods: We used Ontario Drug Benefit pharmacy claims to identify residents aged 66 years who initiated oral bisphosphonate therapy between April 1996 and March 2009. The first date of bisphosphonate dispensing was considered the index date. Persistence with therapy was defined as continuous treatment with no interruption exceeding 60 days. We examined persistence with therapy and the number of extended gaps (>60 days) between prescriptions over time periods ranging from 1 to 9 years. We also identified the proportion of patients filling only a single prescription and switching to a different bisphosphonate, and calculated the median days of exposure irrespective of gaps in therapy. Results: A total of 451,113 eligible new bisphosphonate users were identified: mean age = 75.6 years (SD = 6.9), 84% female, and median follow-up length = 4.7 years. Persistence with therapy declined from 63% at 1 year to 46% at 2 years and 12% at 9 years. Among those with at least 5 years of follow-up (n = 213,029), 61% had one or more extended gaps in bisphosphonate therapy. Overall, 10% of patients filled only a single prescription, 37% switched to a different bisphosphonate and the median exposure was 2.2 years. Conclusion: Less than half of patients persisted with bisphosphonate therapy for 2 years and interruptions in therapy were common, with most patients experiencing two or more >60-day gaps in therapy. Interventions are needed to improve persistence with bisphosphonate therapy and reduce the frequency of gaps in treatment
Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review
The purpose of this review is to examine the literature that has investigated mechanomyographic (MMG) amplitude and frequency responses during dynamic muscle actions. To date, the majority of MMG research has focused on isometric muscle actions. Recent studies, however, have examined the MMG time and/or frequency domain responses during various types of dynamic activities, including dynamic constant external resistance (DCER) and isokinetic muscle actions, as well as cycle ergometry. Despite the potential influences of factors such as changes in muscle length and the thickness of the tissue between the muscle and the MMG sensor, there is convincing evidence that during dynamic muscle actions, the MMG signal provides valid information regarding muscle function. This argument is supported by consistencies in the MMG literature, such as the close relationship between MMG amplitude and power output and a linear increase in MMG amplitude with concentric torque production. There are still many issues, however, that have yet to be resolved, and the literature base for MMG during both dynamic and isometric muscle actions is far from complete. Thus, it is important to investigate the unique applications of MMG amplitude and frequency responses with different experimental designs/methodologies to continually reassess the uses/limitations of MMG
Systematic review of pre-operative exercise in colorectal cancer patients
The aim of this systematic review was to evaluate the evidence for exercise interventions prior to surgery for colorectal cancer resection. The evidence for use of exercise to improve physical fitness and surgical outcomes is as yet unknown. A systematic search was performed of MEDLINE, EMBASE, CINAHL, AMED and BNI databases for studies involving pre-operative exercise in colorectal cancer patients. Eight studies were included in the review. There is evidence that pre-operative exercise improves functional fitness, and to a lesser extent objectively measurable cardio-respiratory fitness prior to colorectal cancer resection. There is no clear evidence at present that this improvement in fitness translates into reduced peri-operative risk or improved post-operative outcomes. Current studies are limited by risk of bias. This review highlights the common difficulty in transferring promising results in a research setting, into significant improvements in the clinical arena. Future research should focus on which type of exercise is most likely to maximise patient adherence and improvements in cardio-respiratory fitness. Ultimately, adequately powered, randomised controlled trials are needed to investigate whether pre-operative exercise improves post-operative morbidity and mortality
- …