408 research outputs found

    Short-range longitudinal and transverse wakefield effects in FERMI@Elettra FEL project

    Get PDF
    The FERMI@Elettra Free Electron Laser (FEL) project is a soft X-ray fourth generation light source under development at the ELETTRA Laboratory of Sincrotrone Trieste. It is one of the FEL based European projects, designed to become the international user facility in Italy for scientific investigations, with ultra high brilliance X-ray pulses, of ultra-fast and ultra-high resolution processes in material science and physical biosciences. When ultra-relativistic charged particles pass through cross section variations of the vacuum chamber wall or experience the finite conductivity of the wall, they generate electromagnetic fields, which are named wakefields since they remain behind the exciting particles. These electromagnetic fields usually influence the energy and the transverse motion of trailing particles leading to beam instabilities, such as single bunch energy spread variations and emittance growth. Since FEL operation requires a beam with a short bunch and high quality in terms of bunch energy spread and emittance, a good knowledge of these wakefields is needed to predict the beam quality. This thesis deals with analytical and numerical studies of the short-range longitudinal and transverse wake¿elds and their effects along the linac and undulator chain. In Ch. 2 we have estimated the short-range wake¿elds in the backward traveling wave (BTW) accelerating structure. Each section is a backward traveling (BTW) structure composed of 162 nose cone cavities coupled magnetically. To calculate the effect of the longitudinal and transverse wake¿elds we have used the time domain numerical approach with a new implicit scheme for calculation of wake potential of short bunches in long structures. The wake potentials of the BTW structure are calculated numerically for very short bunches and analytical approximations for wake functions in short and long ranges are obtained by fitting procedures based on analytical estimations. Finally the single bunch energy spread induced by short-range longitudinal wake¿elds is analyzed. In Ch. 3 we have studied these electron beam dynamics in the presence of the linac transverse wake¿eld. Trajectory manipulation is used to gain control of the transverse wake¿eld induced instability and this technique is also validated in the presence of shot-to-shot trajectory jitter. A specific script working with Courant-Snyder variables has been written to evaluate the residual banana shape after instability suppression in the presence of shot-to-shot trajectory jitter. In Ch. 4 we have analytically derived expressions for the high-frequency longitudinal and transverse resistive-wall coupling impedance of an elliptical cross-section vacuum chamber. Then, the corresponding longitudinal and transverse wake functions have been obtained by calculating numerically the inverse Fourier transforms of the impedances. In Ch. 5 we report a novel concept to passively linearize the bunch compression process in electron linacs for the next generation X-ray free electron lasers. This can be done by using the monopole wake¿elds in a dielectric-lined waveguide. The optimum longitudinal voltage loss over the length of the bunch is calculated in order to compensate both the second-order RF time-curvature and the second-order momentum compaction terms. Thus, the longitudinal phase space after the compression process is linearized up to a fourth-order term introduced by the convolution between the bunch and the monopole wake function

    Electromagnetic field and short-range wake function in a beam pipe of elliptical cross section

    Get PDF
    Within the ultrarelativistic limit, analytical expressions are found for the high-frequency resistive-wall coupling impedance of an elliptical cross-section vacuum chamber. Subsequently, the corresponding wake functions are derived by performing inverse Fourier transformations numerically. The electromagnetic fields have been developed working out two systems of solutions, namely for the vacuum and for the resistive wall. The constants involved in these systems have been determined by matching boundary conditions at the interface vacuum wall. Several study cases have been considered concerning the aspect ratio of the elliptical cross section and the transverse position of the leading charge in order to exemplify the behavior of the longitudinal and transverse wake functions

    Simulation studies for dielectric wakefield programme at CLARA facility

    Full text link
    Short, high charge electron bunches can drive high magnitude electric fields in dielectric lined structures. The interaction of the electron bunch with this field has several applications including high gradient dielectric wakefield acceleration (DWA) and passive beam manipulation. The simulations presented provide a prelude to the commencement of an experimental DWA programme at the CLARA accelerator at Daresbury Laboratory. The key goals of this program are: tunable generation of THz radiation, understanding of the impact of transverse wakes, and design of a dechirper for the CLARA FEL. Computations of longitudinal and transverse phase space evolution were made with Impact-T and VSim to support both of these goals.Comment: 10 Pages, 4 Figures, Proceedings of EAAC2017 Conferenc

    In situ study of the endotaxial growth of hexagonal CoSi2 nanoplatelets in Si(001)

    Get PDF
    This investigation aims at studying-by in situ grazing-incidence small-angle x-ray scattering-the process of growth of hexagonal CoSi2 nanoplatelets endotaxially buried in a Si(001) wafer. The early formation of spherical Co nanoparticles with bimodal size distribution in the deposited silica thin film during a pretreatment at 500 °C and their subsequent growth at 700 °C were also characterized. Isothermal annealing at 700 °C promotes a drastic reduction in the number of the smallest Co nanoparticles and a continuous decrease in their volume fraction in the silica thin film. At the same time, Co atoms diffuse across the SiO2/Si(001) interface into the silicon wafer, react with Si, and build up thin hexagonal CoSi2 nanoplatelets, all of them with their main surfaces parallel to Si{111} crystallographic planes. The observed progressive growths in thickness and lateral size of the hexagonal CoSi2 nanoplatelets occur at the expense of the dissolution of the small Co nanoparticles that are formed during the pretreatment at 500 °C and become unstable at the annealing temperature (700 °C). The kinetics of growth of the volume fraction of hexagonal platelets is well described by the classical Avrami equation.Fil: Costa, Daniel Da Silva. Universidade Federal do Paraná; BrasilFil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Kellermann, Guinther. Universidade Federal do Paraná; BrasilFil: Giovanetti, Lisandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Craievich, Aldo F.. Universidade de Sao Paulo; BrasilFil: Requejo, Felix Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    Design and Field Measurements of a Linear Accelerator Endowed with Single Feed with Movable Short Coupler

    Get PDF
    Field asymmetries in the rf coupler of accelerating structures degrade the projected beam transverse emittance, especially at low energy. This paper presents an alternative single feed coupler design that reduces the dipolar and the quadrupolar field components by exploiting a movable short circuit placed on the opposite waveguide. The structure has been simulated and optimized with the Ansys HFSS simulation code. RF measurements on an aluminum prototype machined in the "Elettra - Sincrotrone Trieste S.C.p.A.", are here presented. Such results are in good agreement with the simulations

    Isothermal aggregation of Bi atoms embedded in a soda borate glass: Coarsening of liquid nanodroplets and atomic diffusion

    Get PDF
    The process of nucleation and growth of liquid Bi nanodroplets embedded in a soda borate glass submitted to isothermal annealing at different temperatures was studied by small-angle x-ray scattering (SAXS) and transmission-electron microscopy. The experimental results indicate that the formation and growth of Bi droplets occur in two successive stages after a short incubation period. The first is characterized by the nucleation and growth of spherical droplets promoted by atomic diffusion and aggregation of isolated Bi atoms and the second one by a subsequent droplet coarsening. The experimental functions describing the time variation of the droplet average radius and density number at advanced stages of the growth process agree with the classical Lifshitz-Slyozov-Wagner (LSW) theory. However, the radius distribution was demonstrated to be well described by a log-normal function thus differing from the prediction of the LSW model. The atomic diffusion coefficient of Bi was determined from SAXS results for several annealing temperatures and, from it, the activation energy for the diffusion process was inferred.67

    In Situ Synchrotron Radiation Small-angle X-ray Scattering Study Of The Kinetics Of Growth Of Cdte Nanocrystals In Borosilicate Glass

    Get PDF
    A number of isolator-semiconductor nanocrystal composites exhibit quantum confinement effects and nonlinear optical properties. In this work, the formation and growth of CdTe and CdTe0.9S0.1 nanocrystals immersed in a borosilicate glass host matrix were studied by small-angle x-ray scattering using synchrotron radiation during in situ annealing in the 560-580°C temperature range. The values of the average radii of the CdTe nanocrystals determined by using Guinier plots for different annealing times (20-30 Å) agree with those obtained from optical absorption spectroscopy measurements. The nanocrystal size distribution depends on the thermal history and composition of the samples. The existence of other structural heterogeneities having an average size of several hundred ångstroms was detected. © 1995 American Institute of Physics.6621338134

    In situ study of the endotaxial growth of hexagonal CoSi2 nanoplatelets in Si(001)

    Get PDF
    This investigation aims at studying-by in situ grazing-incidence small-angle x-ray scattering-the process of growth of hexagonal CoSi2 nanoplatelets endotaxially buried in a Si(001) wafer. The early formation of spherical Co nanoparticles with bimodal size distribution in the deposited silica thin film during a pretreatment at 500 °C and their subsequent growth at 700 °C were also characterized. Isothermal annealing at 700 °C promotes a drastic reduction in the number of the smallest Co nanoparticles and a continuous decrease in their volume fraction in the silica thin film. At the same time, Co atoms diffuse across the SiO2/Si(001) interface into the silicon wafer, react with Si, and build up thin hexagonal CoSi2 nanoplatelets, all of them with their main surfaces parallel to Si{111} crystallographic planes. The observed progressive growths in thickness and lateral size of the hexagonal CoSi2 nanoplatelets occur at the expense of the dissolution of the small Co nanoparticles that are formed during the pretreatment at 500 °C and become unstable at the annealing temperature (700 °C). The kinetics of growth of the volume fraction of hexagonal platelets is well described by the classical Avrami equation.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
    corecore