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Within the ultrarelativistic limit, analytical expressions are found for the high-frequency resistive-wall
coupling impedance of an elliptical cross-section vacuum chamber. Subsequently, the corresponding wake
functions are derived by performing inverse Fourier transformations numerically. The electromagnetic
fields have been developed working out two systems of solutions, namely for the vacuum and for the
resistive wall. The constants involved in these systems have been determined by matching boundary
conditions at the interface vacuum wall. Several study cases have been considered concerning the aspect
ratio of the elliptical cross section and the transverse position of the leading charge in order to exemplify
the behavior of the longitudinal and transverse wake functions.
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I. INTRODUCTION

Free electron laser (FEL) projects aim to achieve high-
brightness photon beam pulses of minimum bandwidth.
However, such pulses may be corrupted by possible large
wakefields along the undulator small-gap vacuum cham-
ber. Thus, knowledge of the short-range wakefields in the
undulator vacuum chamber is needed to predict the beam
quality in terms of the single bunch energy spread and
emittance. A possible choice for a small-gap vacuum
chamber is one with elliptical cross section, for which
there are references to analytically derived expressions
for the low-frequency resistive-wall coupling impedance
(see for example [1–3]). Expressions for the high-
frequency resistive-wall impedance are given, in the case
of DC conductivity model, for a round pipe in [4], and for
the conducting parallel plates in [5]. Adopting the AC
conductivity model [6], the resistive-wall impedance is
given for the round pipe in [7] and for the parallel plates
in [8]. The problem of calculating the coupling impedance,
including the high frequencies, of a resistive beam pipe
with arbitrary cross section has been solved by Yokoya [9]
with the boundary element method. He applied the method
to numerically work out the solution in the case of an
elliptical pipe; moreover, the method can be applied using
both AC and DC conductivity models.

In this paper we analytically derive expressions for the
longitudinal and transverse resistive-wall coupling imped-
ance of a vacuum chamber with elliptical cross section

using another method, precisely the field matching method,
and make a comparison with the results obtained with the
boundary element method on the same geometry. The
paper is organized as follows. In Sec. II we describe the
physical model used to obtain the expressions of the elec-
tromagnetic fields inside the vacuum and inside the resis-
tive parts of the beam pipe, respectively. We use elliptical
coordinates and write the field components in term of
Fourier transformations. In Sec. III we work out the
Maxwell equations to derive a series expression of the
electromagnetic (e.m.) field in the vacuum part, while in
Sec. IV we derive a series expansion of the e.m. field in the
resistive part of the beam pipe. In Sec. V, the constants
involved in the two series expansions are determined by
imposing the boundary conditions at the interface vacuum-
resistive wall. This fully determines the field components.
In Sec. VI we derive the expressions of the longitudinal and
transverse resistive-wall impedances, and the short-range
wake functions are then obtained by calculating numeri-
cally the inverse Fourier transformations of the imped-
ances. In Sec. VII applications and examples are
illustrated, involving different aspect ratios of the cross
section, different materials using both AC and DC con-
ductivity models, and different leading and trailing charges
displacement from the beam pipe axis.

II. PHYSICAL MODEL DESCRIPTION

Let us consider an elliptical cross-section pipe with finite
conductivity � and infinite wall thickness, and denote with
a the major half-axis of the ellipse and with b the minor
one, respectively. Figure 1 shows cross section and longi-
tudinal section of the beam pipe, and the traveling point
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charge with the elliptic cylindrical �u; v; s� coordinates
system, where the s-axis coincides with the pipe axis.
The relations between the Cartesian and the elliptical
coordinates are given in Appendix A and are illustrated
in Fig. 2. The equation u � u0 defines the surface separat-
ing the vacuum region from the resistive wall. The vacuum
region is specified by u < u0 while the metal region by u >
u0. The leading point charge, traveling along the beam
pipe, is assumed to be ultrarelativistic, and its longitudinal
position is s � ct, where c is the velocity of light in
vacuum, while its transverse coordinates are �u1; v1�.

III. FIELDS IN THE VACUUM

Using the elliptical cylindrical coordinates system
O�u; v; s�, the Maxwell’s equations in the vacuum region
can be written as follows, denoting the electric field com-
ponents with Eu, Ev, and Es, and the magnetic field com-

ponents Bu, Bv, and Bs:
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where h is the metric while the charge and current density
are

 

� � q
��s� ct���u� u1���v� v1�

h2 ; (2a)

J � qc
��s� ct���u� u1���v� v1�

h2 ŝ: (2b)

In addition, we refer to the coordinate z � s� ct, which is
the longitudinal displacement from the point charge. Thus
it is z < 0 behind the leading charge and z > 0 ahead of it.
Because of the causality principle, all fields must vanish for
z > 0.

Using the same approach adopted in [4], we write the
field vectors E � �Eu; Ev; Ez� and B � �Bu; Bv; Bz� in
terms of the Fourier transformed vectors ~E, ~B on the
z-axis:

 �E;B� �
1

2�

Z �1
�1
� ~E; ~B�eikzdk: (3)

FIG. 2. Elliptic cylindrical �u; v; s� and a Cartesian orthogonal
�x; y; s� coordinates system.

FIG. 1. (Color) The s-y plane view and cross-section plane view.
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Substituting Eq. (2a) into Eq. (1a) and Eq. (2b) into
Eq. (1h), one obtains the following system of six equations:
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Starting from Eqs. (4a) and (4b), and following the ap-
proach described in Appendix B, the longitudinal compo-
nents of the electric and magnetic fields can be written as

follows:
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(5b)

where An and Bn are constants to be determined.
Starting from Eqs. (4c) and (4d) and using the solutions

in (5), the approach described in Appendix C yields the
following expressions for the transverse fields ~Eu and ~Bu:
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where denoting with H�u� the Heaviside step function and
letting W � ik�a2 � b2�, we can write
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The field components ~Ev and ~Bv can be directly obtained
from Eqs. (4e) and (4f) using the solutions (5) and (6),
yielding
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IV. FIELDS IN THE RESISTIVE WALL

The constants An, Bn, En, and Fn will be determined by
imposing the boundary conditions at the surface separating
the vacuum from the resistive wall. To this aim we need to
calculate the expressions of the fields inside the wall (u >
u0). In the conductor we assume that
 

� � 0; (10a)

J � �E; (10b)

where � is the conductivity of the metal. Furthermore, the
Maxwell equations can be written as
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Using the variable z � s� ct and manipulating Eqs. (11)
yields equations
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where �2 � ikZ0� and � is chosen with positive imaginary
part.

A. Longitudinal fields in the conductor

Each of Eqs. (12a) and (12b) can be solved by separating
the variables u and v, that is assuming the unknown is
proportional to the product between two functions U�u�
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and V�v�. Substituting the product U�u�V�v�
 

d2

dv2 V � �a� 2Q cos2v�V � 0; (13a)

d2

du2 U� �a� 2Q cosh2u�U � 0; (13b)

where Q � l2�2=4 and a is a separation constant.
Equations (13a) and (13b) are called the Mathieu angu-

lar and radial equations, respectively [10]. On the other
hand, the electric and magnetic fields, as well as the
function V�v�, must be 2�-periodic in v. There is a count-
able infinity of values of the constant a that allow
2�-periodic solutions in v. Such values are called the
Mathieu characteristic numbers (MCNs), and can be cal-
culated with the algorithms in [11]. In particular, for
imaginary values of Q (i.e., in the case of DC conductiv-
ity), a useful algorithm can be found in [12].

Adopting the standard notation for the MCNs [13], the
constants a2n and a2n�1 (n � 0) produce even �-periodic
and 2�-periodic solutions, respectively, while the con-
stants b2n (n � 1) and b2n�1 (n � 0) produce odd
�-periodic and 2�-periodic solutions, respectively.

Furthermore the possible solutions V�v� can be written
as
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where the Fourier coefficients can be calculated by recur-
sion formulas [13].

It is worth noting that, for each of the solutions in (14),
the other linearly independent solution of the Mathieu
angular equation, for a fixed MCN, is not periodic in v
[10], thus can be discarded.

The Mathieu radial equation has two linearly indepen-
dent solutions for every MCN. They are called the first and
the second kind radial Mathieu functions, respectively, and
can be expressed as series of products of Bessel functions
[11].

Since we are interested in damped solutions inside the
conductor, a proper linear combination of the solutions of
first and second kind has to be chosen. The damped solu-
tions required for a complex Q are
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where Jn is the Bessel function of the first kind of nth order, H�1�n is the Hankel function of first kind of nth order, w1 �����
Q
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Q
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having positive imaginary part.
Being proportional to U�u�V�v�, the unknowns ~Ez and c ~Bz, can be finally expressed as

 

~Ez �
X�1
n�0

CEanUan�u�
X�1
m�0

Aanm cosmv�
X�1
n�1

DE
bn
Ubn�u�

X�1
m�1

Bbnm sinmv; (16a)

c ~Bz �
X�1
n�0

CBanUan�u�
X�1
m�0

Aanm cosmv�
X�1
n�1

DB
bn
Ubn�u�

X�1
m�1

Bbnm sinmv; (16b)

where the constants CEan , D
E
bn

, CBan , D
B
bn

are to be determined.

B. Transverse fields in the conductor

The transverse fields in the conductor can be directly calculated by substituting Eqs. (16a) and (16b) into Eqs. (12c)–
(12f). As in the following only tangential fields are involved, we give only the expressions for h ~Ev and ch ~Bv:

ELECTROMAGNETIC FIELD AND SHORT-RANGE WAKE . . . Phys. Rev. ST Accel. Beams 11, 074401 (2008)

074401-5



 

h ~Ev �
X�1
n�0

�
�
ik

�2 C
E
anUan

X�1
m�1

mAanm sinmv�
ik

�2 C
B
anU

0
an

X�1
m�0

Aanm cosmv
�

�
X�1
n�1

�
ik

�2 D
E
bn
Ubn

X�1
m�1

mBbnm cosmv�
ik

�2 D
B
bn
U0bn

X�1
m�1

Bbnm sinmv
�
; (17a)

ch ~Bv �
X�1
n�0

��
ik

�2 �
i
k

�
CEanU

0
an

X�1
m�0

Aanm cosmv�
ik

�2 C
B
anUan

X�1
m�1

mAanm sinmv
�

�
X�1
n�1

��
ik

�2 �
i
k

�
DE
bn
U0bn

X�1
m�1

Bbnm sinmv�
ik

�2 D
B
bn
Ubn

X�1
m�1

mBbnm cosmv
�
: (17b)

V. EVALUATION OF THE CONSTANTS

The constants involved in the field expressions are de-
termined by satisfying the boundary conditions at u � u0,
separating the vacuum from the resistive wall.

Precisely , the continuity of ~Ez, h ~Ev, c ~Bz, and hc ~Bv, the
field components tangential to the surface u � u0, is im-
posed. As a result, the constants A2n, A2n�1, B2n, and B2n�1

can be calculated by solving through four independent
tridiagonal linear systems. More details about the estima-
tion of the linear system can be found in Appendix D.
Truncating every tridiagonal linear system at the �M�
1�th order we obtain
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Since the coefficients on the diagonals are not zero, the
system can be easily determined by Gaussian elimination
without pivoting. Thus, the following recursive formula
can be used to obtain the coefficients:
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A. System involving the constants A2n

 

d0 � �
W
4

sinh2u0 � R�u0�

�
ik

�2 �
i
k

�
;

dn � �W
�

sinh�2n� 2�u0

�16n� 8� sinh2nu0
�

cosh�2n� 2�u0

�16n� 8� cosh2nu0
�

sinh�2n� 2�u0

�16n� 8� sinh2nu0
�

cosh�2n� 2�u0

�16n� 8� cosh2nu0

�

�
2ni
k
�
i
k
R�u0� coth2nu0 �

ik

�2 �R�u0��tanh2nu0 � coth2nu0� � 4n� n � 1;

z0 �
W
8

sinh2u0; zn �
W

16n� 8

�
sinh�2n� 2�u0

sinh2nu0
�

cosh�2n� 2�u0

cosh2nu0

�
n � 1;

s0 �
W
4

1

cosh2u0
; sn �

W
16n� 8

�
sinh2nu0

sinh�2n� 2�u0
�

cosh2nu0

cosh�2n� 2�u0

�
n � 1;

t0 � �
q

2��0
; tn �

q
��0

cos2nv1 cosh2nu1�tanh2nu0 � coth2nu0� n � 1:

(22)
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B. System involving the constants A2n�1

 

d0 � �
W
16

�
sinh3u0

sinhu0
�

cosh3u0

coshu0

�
�
i
k
�
i
k
R�u0� cothu0 �

ik

�2 �R�u0��tanhu0 � cothu0� � 2�;

dn � �
W

16�n� 1�

�
sinh�2n� 3�u0

sinh�2n� 1�u0
�

cosh�2n� 3�u0

cosh�2n� 1�u0

�
�

W
16n

�
sinh�2n� 1�u0

sinh�2n� 1�u0
�

cosh�2n� 1�u0

cosh�2n� 1�u0

�

�
�2n� 1�i

k
�
i
k

R�u0�

tanh�2n� 1�u0
�
ik

�2 �R�u0��tanh�2n� 1�u0 � coth�2n� 1�u0� � 2�2n� 1�� n � 1;

zn�1 �
W

16n

�
sinh�2n� 1�u0

sinh�2n� 1�u0
�

cosh�2n� 1�u0

cosh�2n� 1�u0

�
n � 1;

sn�1 �
W

16n

�
sinh�2n� 1�u0

sinh�2n� 1�u0
�

cosh�2n� 1�u0

cosh�2n� 1�u0

�
n � 1;

tn�1 �
q
��0

cos�2n� 1�v1 cosh�2n� 1�u1�tanh�2n� 1�u0 � coth�2n� 1�u0� n � 1:

(23)

C. System involving the constants B2n

 

d0 � �
W
4

sinh2u0 � R�u0�
ik

�2 ;

dn � �W
�

sinh�2n� 2�u0

�16n� 8� sinh2nu0
�

cosh�2n� 2�u0

�16n� 8� cosh2nu0
�

sinh�2n� 2�u0

�16n� 8� sinh2nu0
�

cosh�2n� 2�u0

�16n� 8� cosh2nu0

�

�
2ni
k
�
i
k
R�u0� tanh2nu0 �

ik

�2 �R�u0��tanh2nu0 � coth2nu0� � 4n� n � 1; z0 � �
W
8

sinh2u0;

zn � �
W

16n� 8

�
sinh�2n� 2�u0

sinh2nu0
�

cosh�2n� 2�u0

cosh2nu0

�
n � 1; s0 � �

W
4

1

cosh2u0
;

sn � �
W

16n� 8

�
sinh2nu0

sinh�2n� 2�u0
�

cosh2nu0

cosh�2n� 2�u0

�
n � 1; t0 � 0;

tn �
q
��0

sin2nv1 sinh2nu1�coth2nu0 � tanh2nu0� n � 1:

(24)

D. System involving the constants B2n�1

 

d0 � �
W
16

�
sinh3u0

sinhu0
�

cosh3u0

coshu0

�
�
i
k
�
i
k
R�u0� tanhu0 �

ik

�2 �R�u0��tanhu0 � cothu0� � 2�;

dn � �
W

16�n� 1�

�
sinh�2n� 3�u0

sinh�2n� 1�u0
�

cosh�2n� 3�u0

cosh�2n� 1�u0

�
�

W
16n

�
sinh�2n� 1�u0

sinh�2n� 1�u0
�

cosh�2n� 1�u0

cosh�2n� 1�u0

�
�
�2n� 1�i

k

�
i
k
R�u0� tanh�2n� 1�u0 �

ik

�2 �R�u0��tanh�2n� 1�u0 � coth�2n� 1�u0� � 2�2n� 1�� n � 1;

zn�1 � �
W

16n

�
sinh�2n� 1�u0

sinh�2n� 1�u0
�

cosh�2n� 1�u0

cosh�2n� 1�u0

�
n � 1;

sn�1 � �
W

16n

�
sinh�2n� 1�u0

sinh�2n� 1�u0
�

cosh�2n� 1�u0

cosh�2n� 1�u0

�
n � 1;

tn�1 �
q
��0

sin�2n� 1�v1 sinh�2n� 1�u1�coth�2n� 1�u0 � tanh�2n� 1�u0� n � 1:

(25)

ELECTROMAGNETIC FIELD AND SHORT-RANGE WAKE . . . Phys. Rev. ST Accel. Beams 11, 074401 (2008)

074401-7



VI. SHORT-RANGE WAKE FUNCTIONS

Let us consider an ultrarelativistic trailing charge qt
traveling with a longitudinal displacement z from the
leading charge q; its transverse coordinates are �u; v�.
The Lorentz force experienced by the trailing charge due
to the leading charge is

 F � qt�E� ẑ	 cB�: (26)

The longitudinal and transverse components of F are
 

FL � qtEz; (27a)

FT � qt�û�Eu � cBv� � v̂�Ev � cBu��; (27b)

where the fields Ez, Eu, Ev, Bu, and Bv are evaluated in
�u; v; z� and depend on the position �u1; v1; 0� of the lead-
ing charge q. Using Eqs. (4e) and (4f); we can write
 

~Ev � c ~Bu � �
i
hk

@ ~Ez
@v

; (28a)

~Eu � c ~Bv � �
i
hk

@c ~Bz
@v

: (28b)

Thus, the force depends only on the longitudinal compo-
nents Ez and Bz.

The wake function per unit of length is defined by W �
F=qqt, and is related to the impedance through the follow-
ing Fourier transformation:

 Z �u; v; k� �
1

c

Z �1
�1

W�z; u; v�e�ikzdz: (29)

Consequently, the longitudinal impedance per unit of
length is given by 1=qc times the expression of ~Ez�k� in
Eq. (5a):

 ZL�u; v; k� �
X�1
n�0

An
qc

coshnu cosnv�
X�1
n�1

Bn
qc

	 sinhnu sinnv (30)

while the two components Zu and Zv of the transverse
impedance ZT � Zuû� Zvv̂ are calculated using
Eqs. (27b) and (28):
 

Zu�u; v; k� � �
i

qchk

X�1
n�1

n�An sinhnu cosnv

� Bn coshnu sinnv�; (31a)

Zv�u; v; k� � �
i

qchk

X�1
n�1

n�An coshnu sinnv

� Bn sinhnu cosnv�: (31b)

Thus, the wake functions are obtained by a numerical
inverse Fourier transformation of the impedance. The
fields vanish for z > 0 and since the real part of the
impedance drops more quickly for large values of k than

the imaginary part it seems to be more convenient to use
the cosine inverse transformation:

 WL �
2c
�

Z �1
0
<�ZL� cos�kz�dk (32)

 W T �
2c
�

Z �1
0
�<�Zv�v̂�<�Zu�û� cos�kz�dk: (33)

VII. EXAMPLES AND RESULTS

In this section the impedances and the short wake func-
tions are calculated for several cases, such as cross sections
with different aspect ratio values a=b and two different
kinds of conductors, aluminum, and copper with DC and
AC conductivity values. The conductivity � and the re-
laxation time � used for aluminum and copper are listed in
Table I. The relative displacement between the leading and
the trailing charge is also considered. Basically, the tri-
diagonal linear system in Eq. (18) must be truncated and
when we consider large values for the aspect ratio a=b,
more sine and cosine components are needed to represent
the fields accurately. A particular case is when both
charges, leading and trailing, travel along on-axis in the
vacuum chamber. In this case, only the A even subsystem is
excited, and the longitudinal impedance is then simplified
as

 ZL�u; v; k� �
X�1
n�0

��1�n

qc
A2n: (34)

In a small region around the axis, the longitudinal wake
function remains approximately constant while the trans-
verse wake function depends linearly on the displacements
of the leading and the trailing charges. This effect is shown
in Fig. 3. The longitudinal wake function has been calcu-
lated at z � 0 with different transverse positions of both
the leading and the trailing charges from the axis (offset).
Figures 3(a) and 3(b) show these values normalized to the
value of the wake function on axis. For the transverse wake
function, the maximum values divided by the offset of the
charges have been calculated, and Figs. 3(c) and 3(d) show
these values normalized with respect to the limit of the
wake function for the offset approaching zero. In this way
it is shown that, if the offset is sufficiently small, the
longitudinal wake function is approximately equal to the
value on axis, while the transverse wake function can be
considered as a linear function of the offset. For this

TABLE I. Conductivity and electron relaxation time for alu-
minum and copper.

� �

Aluminum 4:2281	 107 Sm�1 8:0055	 10�15 s
Copper 6:4534	 107 Sm�1 2:7019	 10�14 s
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reason, whenever the offset is small, transverse wake func-
tions are expressed per unit of length of transverse dis-
placement in V=pC=m2.

In the following examples we applied our method using
vacuum chambers having the short half-axis length b �
3 mm. The reason is that this value is equal to the half gap
for the undulator vacuum chamber of the FERMI@Elettra
FEL project [14]. Nevertheless to better compare our plots

with the results obtained with the boundary element
method by Yokoya, Fig. 6 has been obtained using b �
1 cm, the DC conductivity model, and the same aspect
ratio values presented in [9].

Figure 4 shows the longitudinal impedance with the AC
conductivity model for copper and aluminum, as a function
of the wave number k and for several values of the aspect
ratio a=b.
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FIG. 3. (Color) Growth of the longitudinal wake functions and nonlinearity with the offset of the transverse wake functions depending
on the offset of the leading and trailing charges.
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FIG. 4. (Color) Longitudinal impedance vs log10k (k in m�1) obtained using the AC conductivity model for aluminum (a) and copper
(b), semiaxis b � 3 mm, and with several aspect ratio values a=b.
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Figure 5 shows the longitudinal wake functions for a
vacuum chamber with semiminor axis b � 3 mm and
several aspect ratio values a=b, as a function of the longi-
tudinal displacements behind the leading charge. It is
worthwhile noting that the longitudinal wake functions
reduce to those of the circular case when a=b � 1 [7]

and to those of the parallel plates when a=b
 1 [8],
respectively.

Figure 6 shows the transverse wake functions obtained
using DC conductivity model for copper and a semiaxis
b � 10 mm. It is worthy to mention that in the figure the
conductivity used is 5:3	 107 Sm�1 and that the results
obtained reduce correctly to the circular case [4] and to the
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FIG. 6. (Color) Transverse wake functions in the case where both charges are close to the vacuum chamber axis. The vacuum chamber
has short half-axis of length b � 1 cm, the metal wall is characterized by a conductivity � � 5:3	 107 Sm�1, and the DC
conductivity model has been used.
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FIG. 5. (Color) Dependence of longitudinal wake functions on the longitudinal displacement behind the leading charge. Semiminor
axis b � 3 mm, AC conductivity models for aluminum (a) and copper (b), and several aspect ratio values a=b.
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parallel plates case [5]. Furthermore, the results are in good
agreement with the solutions proposed in [9].

Figure 7 shows the transverse wake functions as func-
tions of the longitudinal displacement behind the leading
charge, for aluminum. Here we considered three different
relative transverse positions between the leading and the
trailing charges: both charges with a y offset, the leading
charge off-axis and the trailing charge on axis and vice
versa. The semiminor axis b is 3 mm and the more signifi-

cant case of AC conductivity model is considered.
Figure 7(f) shows that @

@xWx �
@
@x1
Wx vanishes for large

values of a=b, when the ellipse approaches the parallel
plates limit. When an ultrashort bunch is considered, then
the transverse wake with the leading and the trailing
charges off axis with the same offset should be considered.
Figures 7(e) and 7(f) represent this case. As explained in
[15], the transverse wake forces near the axis of a bisym-
metric pipe (the elliptical pipe has mirror symmetry in both
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FIG. 7. (Color) Dependence of transverse wake functions on the longitudinal displacement behind the leading charge in a small region
around the vacuum chamber axis. Semiminor axis b � 3 mm and several values of the aspect ratio a=b are considered. AC
conductivity model for aluminum is used.
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x and y) have the property @Wy

@y � �
@Wx
@x . This explains why

Fig. 7(d) is the mirror of Fig. 7(c).
Once the wake function is known, the energy change per

unit length (in eV=m) induced within a particle bunch is
obtained from the convolution:

 �E�z� � �eQ
Z z

�1
WL�z� z0���z0�dz0; (35)

where e is the electron charge and Q is the total bunch
charge with longitudinal charge distribution ��z� expressed
in m�1. Figure 8 shows the convolutions obtained with the
wake functions and flattop bunches of charge equal to 1 nC
and different lengths.

As for the longitudinal case, once the transverse wake
function is known, the transverse kick for unit length and
for transverse offset (in rad=m2) received by the particles in
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FIG. 8. (Color) Energy variation per unit length induced within flattop bunches with different lengths and charge of 1 nC. Semiminor
axis b � 3 mm, AC conductivity model, and several aspect ratio values a=b are used.
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the vertical plane within the bunch is obtained from the
following convolution:

 ky�z� �
eQ
E0

Z z

�1
Wy�z� z0���z0�dz0; (36)

where e is the electron charge, Q is the total bunch charge

with longitudinal bunch distribution ��z�, and E0 is the
bunch mean energy. Here only the vertical plane is consid-
ered, because for aspect ratio values a=b > 3 the effect of
the transverse wake for a horizontal offset can be ne-
glected. Figure 9 shows the convolutions obtained with
the wake functions and flattop bunches of charge equal to
1 nC and different lengths.
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FIG. 9. (Color) Transversal kick per unit length and off-axis displacement, along the short axis direction, induced within flattop
bunches with different lengths and charge 1 nC at 1.2 GeV. Semiminor axis b � 3 mm, AC conductivity model, and several aspect
ratio values a=b are used.
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VIII. CONCLUSION

In this paper we have analytically derived expressions
for the high-frequency longitudinal and transverse
resistive-wall coupling impedance of an elliptical cross-
section vacuum chamber. Then, the corresponding longi-
tudinal and transversal wake functions have been obtained
by calculating numerically the inverse Fourier transforma-
tions of the impedances. Once the longitudinal wake func-
tion was known, the energy changes per unit length
induced within particle bunches was estimated by means
of a convolution between the wake function and several
flattop charge distributions. The results show that the en-
ergy variation induced within the bunch could assume an
unacceptably large value when shorter electron bunches
are used. Using the aluminum as material and an elliptical
shape with aspect ratio a=b > 3 for the vacuum chamber,
the amplitude and the number of oscillations can be
reduced.

As for the longitudinal case, the transverse kick for unit
length and for transverse offset received by the particles in
the vertical plane within the bunch is obtained through the
convolution between the transverse wake function and the
flattop charge distributions. For the particle bunches con-
sidered, the results have shown that the kick angle received
from the head and tail of the bunch itself maintains an
acceptable value even for shorter lengths of the charge
distributions. It is worthwhile mentioning that in a small
region around the axis the longitudinal wake function
remains approximately constant while the transverse
wake function depends linearly on the displacements of
the leading and trailing charges.
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APPENDIX A: ELLIPTICAL CYLINDRICAL
COORDINATES

With reference to Fig. 2, the Cartesian coordinates
�x; y; s� and the elliptical coordinates �u; v; s� are related
as follows:

 x � l coshu cosv; (A1)

 y � l sinhu sinv; (A2)

where l �
�����������������
a2 � b2
p

is the half focal length.
The metric coefficients for the elliptic cylindrical coor-

dinates are

 h � hu � hv � l
���������������������������������
cosh2u� cos2v

p
: (A3)

The inverse of (A1) and (A2) is

 u � <
�
acosh

x� iy
l

�
; (A4)

 v � =
�
acosh

x� iy
l

�
: (A5)

The unit vectors û and v̂ are expressed as

 û �
x̂ sinhu cosv� ŷ coshu sinv���������������������������������

cosh2u� cos2v
p ; (A6)

 v̂ �
�x̂ coshu sinv� ŷ sinhu cosv���������������������������������

cosh2u� cos2v
p : (A7)

The segment u � 0 connects the foci, and the couples
�0; v� and �0;�v� represent the same point on the cross
section. Note that the unit vectors û and v̂ are discontinu-
ous on the segment u � 0. Precisely,

 lim
v!x

û�0; v� � � lim
v!�x

û�0; v�; (A8)

 lim
v!x

v̂�0; v� � � lim
v!�x

v̂�0; v�: (A9)

APPENDIX B: DERIVATION OF THE
LONGITUDINAL FIELDS IN THE VACUUM

REGION

Deriving Eq. (4a) on v�u� and Eq. (4b) on u�v� and then
summing (subtracting), we obtain the Laplace equation:

 

@2 ~Ez
@u2

�
@2 ~Ez
@v2 � 0;

@2 ~Bz
@u2 �

@2 ~Bz
@v2 � 0: (B1)

Now let Fz be the generic of the two unknowns ~Ez and ~Bz,
thus

 

@2Fz
@u2

�
@2Fz
@v2 � 0: (B2)

Fz must be 2�-periodic in v, it can be expanded as Fourier
series on v as

 Fz � Fz0�u� �
X�1
n�1

�Fczn�u� cosnv� Fszn�u� sinnv�: (B3)

Substituting (B3) into (B2) yields the equation
 

F00z0�u� �
X�1
n�1

�Fc
00

zn�u� � n2Fczn�u�� cosnv

�
X�1
n�1

�Fs
00

zn�u� � n
2Fszn�u�� sinnv � 0; (B4)

where F00�u� denotes the second derivative on u.
The latter equation is equivalent to the following system

of infinitely many equations:

 Fz000 �u� � 0; (B5)
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 Fc
00

zn�u� � n2Fczn�u� � 0 n � 1; 2 . . . ; (B6)

 Fs
00

zn�u� � n2Fszn�u� � 0 n � 1; 2 . . . (B7)

whose solutions are

 Fz0�u� � A0 � A0uu; (B8)

 Fczn�u� � An coshnu� Bn sinhnu; (B9)

 Fszn�u� � Cn coshnu�Dn sinhnu: (B10)

Substituting into (B3) the longitudinal components can be
written as
 

~Ez � A0 � A0uu�
X�1
n�1

An coshnu cosnv

� Bn sinhnu sinnv� En coshnu sinnv

� Fn sinhnu cosnv (B11a)

~Bz � B0 � B0uu�
X�1
n�1

Cn coshnu cosnv

�Dn sinhnu sinnv�Gn coshnu sinnv

�Hn sinhnu cosnv: (B11b)

As the two couples �0;�v�, �0; v� specify the same point of
the segment u � 0 connecting the foci of the elliptical
cross section, we must impose the condition

 Fz�0; v� � Fz�0;�v�: (B12)

This implies Cn � 0 and Hn � 0. Taking this into account
and substituting (B11a) and (B11b) into (4a) and (4b)
yields An � �cDn, Bn � cCn, En � cHn � 0, Fn �
�cGn � 0, A0u � 0, and B0u � 0. Thus, (B11a) and
(B11b) reduce to (5a) and (5b), respectively.

APPENDIX C: DERIVATION OF THE
TRANSVERSE FIELDS IN THE VACUUM REGION

Differentiating and combining Eqs. (4c) and (4d) yields
the equations
 

@2h ~Eu
@u2 �

@2h ~Eu
@v2 �

q
�0
�0�u� u1���v� v1�

� ik
@h2 ~Ez
@u

�
i
k
@
@u

@2 ~Ez
@v2

� ik
@h2c ~Bz
@v

�
i
k
@
@v

@2c ~Bz
@v2 ; (C1a)

@2hc ~Bu
@u2 �

@2hc ~Bu
@v2 � �

q
�0
��u� u1��

0�v� v1�

� ik
@h2 ~Ez
@v

�
i
k
@
@v

@2 ~Ez
@v2

� ik
@h2c ~Bz
@u

�
i
k
@
@u

@2c ~Bz
@v2 : (C1b)

Deriving Eqs. (4a) and (4b) yields
 

@2

@v2

@ ~Ez
@u
�

@2

@v2

@c ~Bz
@v
� 0; (C2a)

@2

@v2

@c ~Bz
@u
�

@2

@v2

@ ~Ez
@v
� 0: (C2b)

Furthermore, using Eqs. (4a) and (4b) the following equal-
ities can be verified:
 

@h2 ~Ez
@u

�
@h2c ~Bz
@v

� c ~Bz
@h2

@v
� ~Ez

@h2

@u
; (C3a)

@h2 ~Ez
@v

�
@h2c ~Bz
@u

� �c ~Bz
@h2

@u
� ~Ez

@h2

@v
: (C3b)

Finally, substituting (C3a) into (C1a) and (C3b) into (C1b),
and using (C2a), (C2b), and (A3) we obtain
 

@2h ~Eu
@u2 �

@2h ~Eu
@v2 �

q
�0
�0�u� u1���v� v1�

� ikl2c ~Bz sin2v� ikl2 ~Ez sinh2u;

(C4a)

@2hc ~Bu
@u2 �

@2hc ~Bu
@v2 � �

q
�0
��u� u1��

0�v� v1�

� ikl2c ~Bz sinh2u� ikl2 ~Ez sin2v:

(C4b)

The homogeneous equations associated with (C4a) and
(C4b) are Laplace equations. Their solutions are denoted
by K ~Eu and K ~Bu, respectively, and have the form in (B11)
with Ez and Bz replaced by h ~Eu and h ~Bu, respectively.

In order to find particular solutions of Eqs. (C4a) and
(C4b) in the presence of only the longitudinal fields in the
right-hand sides, we substitute ~Ez and c ~Bz [given by (5a)
and (5b) respectively] into (C4a) and (C4b). Then the right-
hand sides of (C4a) and (C4b) become linear combinations

TABLE II. The terms related to the longitudinal components
in the right-hand sides of Eqs. (C4) are proportional to the
functions in the Forcing term column. The corresponding par-
ticular solutions are reported in the other column.

Forcing term Particular solution

sinh2u sinh2u
4

sinh2u coshu cosv �sinh3u
16 �

1
4 u coshu� cosv

sinh2u coshnu cosnv �sinh�n�2�u
8n�8 � sinh�n�2�u

8n�8 � cosnv

sinh2u sinhu sinv �cosh3u
16 �

1
4 u sinhu� sinv

sinh2u sinhnu sinnv �cosh�n�2�u
8n�8 � cosh�n�2�u

8n�8 � sinnv

sin2v � sin2v
4

sin2v coshu cosv � sin3v
16 coshu� u sinv

4 sinhu

sin2v coshnu cosnv �� sin�n�2�v
8n�8 � sin�n�2�v

8n�8 � coshnu

sin2v sinhu sinv cos3v
16 sinhu� u 1

4 cosv coshu

sin2v sinhnu sinnv �cos�n�2�v
8n�8 � cos�n�2�v

8n�8 � sinhnu
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of the forcing terms in Table II, so that the problem reduces
to that of finding particular solutions of the equations

 

@2F�u; v�

@u2
�
@2F�u; v�

@v2 � g�u; v�; (C5)

where g�u; v� is the generic forcing term. For each a
particular solution is reported in Table II. Particular solu-
tions related to the longitudinal fields are given by (7c)–
(7f).

Substituting the solutions K ~Eu, K ~Bu and (7c)–(7f) into
the first order system of Eqs. (4c) and (4d), yields the
conditions A0u � 0, B0u � 0, An � cDn, Bn � �cCn,
En � �cHn �

ni
k Bn, and Fn � cGn �

ni
k An.

Furthermore, the following conditions of continuity of
the vectors h ~Euû and hc ~Buû must be imposed on the
segment u � 0:

 h ~Bu�0; v� � �h ~Bu�0;�v�; (C6)

 h ~Eu�0; v� � �h ~Eu�0;�v�: (C7)

The latter conditions lead to impose: A0 � 0, B0 � 0,
An � 0, and Cn � 0. In conclusion, the solutions K ~Eu
and K ~Bu of the homogeneous Eqs. (C4a) and (C4b) are
given by (7a) and (7b), respectively. The particular solu-
tions of (C4a) and (C4b), related only to the charge q, are
denoted with Sq~Eu and Sq~Bu, respectively, and are obtained by
starting from the following Fourier series expansion of the
u-components of the fields and of the source terms, as
follows:

 

Sq~Eu � E0�u��
X�1
n�1

Ecn�u�cosnv�
X�1
n�1

Esn�u� sinnv; (C8a)

Sq~Bu � B0�u��
X�1
n�1

Bcn�u�cosnv�
X�1
n�1

Bsn�u� sinnv; (C8b)

 

�0�u� u1���v� v1� � �0�u� u1�

�
1

2�
�

1

�

X�1
n�1

cosnv cosnv1 �
1

�

X�1
n�1

sinnv sinnv1

�
; (C9a)

��u� u1��
0�v� v1� �

��u� u1�

�

�X�1
n�1

n cosnv sinnv1 �
X�1
n�1

n sinnv cosnv1

�
: (C9b)

Substituting (C8a) and (C9a) into (C4a), (C8b) and (C9b)
into (C4b), and assuming the presence, in the right-hand
sides, of only the terms related to the charge q, yields the
following systems of equations:

 

8>>><>>>:
E000 �u� �

1
2�

q
�0
�0�u� u1�

Ec
00

n �u� � n2Ecn�u� �
q
�0
�0�u� u1�

1
� cosnv1

Es
00

n �u� � n2Esn�u� �
q
�0
�0�u� u1�

1
� sinnv1;

(C10)

 

8>><>>:
B000 �u� � 0

Bc
00

n �u� � n2Bcn�u� � �
nq
�0
��u� u1�

1
� sinnv1

Bs
00

n �u� � n2Bsn�u� �
nq
�0
��u� u1�

1
� cosnv1;

(C11)

for all positive integers n. A possible solution of system
(C10) is given by
 

E0 �

(
0 u < u1
q

2��0
u > u1;

Ecn�u� �
q
��0

cosnv1

(
sinhnu1 sinhnu u < u1

coshnu1 coshnu u > u1;

Esn�u� � �
q
��0

sinnv1

(
coshnu1 coshnu u < u1

sinhnu1 sinhnu u > u1:

(C12)

A possible solution of system (C11) is given by

 

B0 � 0;

Bcn�u� �
q
��0

sinnv1

(
coshnu1 sinhnu u < u1

sinhnu1 coshnu u > u1;

Bsn�u� �
q
��0

cosnv1

(
sinhnu1 coshnu u < u1

coshnu1 sinhnu u > u1:

(C13)

Substituting (C12) and (C13) into (C8a) and (C8b) yields
(7g) and (7h).
h ~Ev and hc ~Bv are straightforwardly obtained using the

Eqs. (4e) and (4f).

APPENDIX D: IMPOSING THE BOUNDARY
CONDITIONS

To evaluate the constants in the fields expressions, the
continuity of the tangential components ~Ez, ~Ev, ~Bz, ~Bv on
the surface u � u0 must be imposed.

Observing the Fourier expansion of the fields [Eqs. (7)
and (9a)], it can be noticed that there is no relation between
even and odd constants, because the nth component of the
expansion depends on the �n� 2�th and on the �n� 2�th
components in the vacuum, while Eq. (14) shows that
angular Mathieu functions are sums of either �-periodic
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functions (even MCNs) or 2�-periodic functions (odd
MCNs). Considering for ~Ez and ch ~Bv only the terms
proportional to cosines and for ~Bz and h ~Ev only the terms
proportional to sines, only the subset of constants An, Fn,
CEan , and DB

bn
is involved, while considering for ~Ez and

ch ~Bv only the terms proportional to sines and for ~Bz and
h ~Ev only the terms proportional to cosines, only the subset
of constants Bn, En, CBan , and DE

bn
is involved. This shows

that the whole system can be divided into four independent
parts.

Assuming the metal as a good conductor (like copper or
aluminum) allows us to use the following asymptotic ap-
proximation for the Mathieu radial functions (which has
been validated numerically):

 U�u� � ei�w2�w1� � ei2
���
Q
p

sinhu; (D1)

where w1 �
����
Q
p

e�u and w2 �
����
Q
p

eu. Q is complex, with
large modulus and its square root has positive imaginary
part. From Eq. (D1) the derivative of U�u� on u � u0 is
given by

 

@
@u
U0�u0� � 2i

����
Q

p
coshu0U�u0� � R�u0�U�u0�: (D2)

In the sequel the subsystems will be solved, denoting with
�E<; B<� the fields in the vacuum region, and with
�E>; B>� the fields in the metal.

Considering the components cosmv of ~Ez and imposing
the continuity condition

 

~E<
z ju0

� ~E>z ju0
;

we obtain

 

X�1
m�0

Am coshmu0 cosmv �
X�1
n�0

CEanUan�u0�
X�1
m�0

Aanm cosmv:

(D3)

Thus for each m, we can write

 

X�1
n�0

CEanUan�u0�A
an
m � Am coshmu0: (D4)

Considering the components sinmv of c ~Bz and imposing
the continuity condition

 c ~B<z ju0
� c ~B>z ju0

;

we obtain

 �
X�1
m�1

Am sinhmu0 sinmv �
X
bn

DB
bn
Ubn�u0�

	
X�1
m�1

Abnm sinmv: (D5)

Thus for each m we can write

 

X
bn

DB
bn
Ubn�u0�B

bn
m � �Am sinhmu0: (D6)

We consider the sinmv components of h ~Ev and the cosmv
components of ch ~Bv on u � u0; further, using Eqs. (17),
(D2), (D4), and (D6) we write the cosmv of h ~E>v and the
sinmv of hc ~B>v , in terms of the constants An, yielding
 

h ~E<v � �
X�1
m�1

Fm coshmu0 sinmv� SsEv

�
X�1
m�1

q
��0

cosmv1 coshmu1 sinhmu0 sinmv;

hc ~B<v �
X�1
m�1

Fm sinhmu0 cosmv� ScBv �
q

2��0

�
X�1
m�1

q
��0

cosmv1 coshmu1 coshmu0 cosmv;

h ~E>v � �
X�1
m�1

m
ik

�2 Am coshmu0 sinmv

�
X�1
m�1

ik

�2 R�u0�Am sinhmu0 sinmv;

hc ~B>v �
X�1
m�0

�
ik

�2 �
i
k

�
R�u0�Am coshmu0 cosmv

�
X�1
m�1

m
ik

�2 Am sinhmu0 cosmv:

(D7)

Finally, imposing the continuity of hc ~Bv and h ~Ev on u �
u0 the tridiagonal linear systems (22) and (23) are ob-
tained. Using the same arguments, the tridiagonal linear
systems (24) and (25) are obtained.
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