358 research outputs found

    Assessment of Failure Frequencies of Pipelines in Natech Events Triggered by Earthquakes

    Get PDF
    During a seismic event, underground pipelines can undergo to significant damages with severe implications in terms of life safety and economic impact. This type of scenarios falls under the definition of Natech. In recent years, quantitative risk analysis became a pivotal tool to assess and manage Natech risk. Among the tools required to perform the quantitative assessment of Natech risk, vulnerability models are required to characterize equipment damages from natural events. This contribution is focused on the review of the pipeline vulnerability models available for the case of earthquakes. Two main categories of models have been identified in the literature. A first category proposes the repair rate as performance indicator for the damage of pipeline due to seismic load, and gives as output the number of required repairs per unit length. A second category proposes fragility curves associated with risk states depending on the mechanism of ground failure. In the framework of Natech risk assessment, the latter have the important advantage of having clearly and unambiguously defined the risk status (and thus the extent of the release) with which they are associated. A subset of vulnerability models deemed more appropriate to be applied in the framework of Natech risk assessment is then identified. Their application to the assessment of the expected frequencies of release events due to pipeline damage is provided, enabling their comparison and the discussion of the relative strengths and weaknesses

    Fragments Generated during Liquid Hydrogen Tank Explosions

    Get PDF
    Liquid hydrogen (LH2) may be employed to transport large quantities of pure hydrogen or be stored onboard of ships, airplanes and trains fuelled by hydrogen, thanks to its high density compared to gaseous compressed hydrogen. LH2 is a cryogenic fluid with an extremely low boiling point (-253°C at atmospheric pressure) that must be stored in double-walled vacuum insulated tanks to limit the boil-off formation. There is limited knowledge on the consequences of LH2 tanks catastrophic rupture. In fact, the yield of the consequences of an LH2 tank explosion (pressure wave, fragments and fireball) depend on many parameters such as tank dimension, filling degree, and tank internal conditions (temperature and pressure) prior the rupture. Only two accidents provoked by the rupture of an LH2 tank occurred in the past and a couple of experimental campaigns focussed on this type of accident scenario were carried out for LH2. The aim of this study is to analyse one of the LH2 tank explosion consequences namely the fragments. The longest horizontal and vertical ranges of the fragments thrown away from the blast wave are estimated together with the spatial distribution around the tank. Theoretical models are adopted in this work and validated with the experimental results. The proposed models can aid the risk analysis of LH2 storage technologies and provide critical insights to plan a prevention and mitigation strategy and improve the safety of hydrogen applications

    A new proposal: A digital flow for the construction of a haas-inspired rapid maxillary expander (HIRME)

    Get PDF
    Maxillary expansion is a common orthodontic treatment used for the correction of posterior crossbite resulting from reduced maxillary width. Transverse maxillomandibular discrepancies are a major cause of several malocclusions and may be corrected in dierent manners; in particular, the rapid maxillary expansion (RME) performed in the early mixed dentition has now become a routine procedure in orthodontic practice. The aim of this study is to propose a procedure that reduces the patient cooperation as well as the lab work required in preparing a customized Haas-inspired rapid maxillary expander (HIRME) that can be anchored to deciduous teeth and can be utilized in mixed dentition with tubes on the molars and hooks and brackets on the canines. This article thus presents an expander that is completely digitally developed, from the first moment of taking the impression with an optical scanner to the final solidification phase by the use of a 3D printer. This digital flow takes place in a CAD environment and it starts with the creation of the appliance on the optical impression; this design is then exported as an stl extension and is sent to the print service to obtain a solid model of the device through a laser sintering process. This "rough" device goes through a post-processing procedure; finally, a commercial expansion screw is laser-welded. This expander has all the advantages of a cast-metal Haas-type RME that rests on deciduous teeth; moreover, it has the characteristic of being developed with a completely digitized and individualized process, for the mouth of the young patient, as well as being made completely of cobalt-chrome, thus ensuring greater adaptability and stability in the patient's mouth

    Integrated environmental risk assessment of major accidents in the transport of hazardous substances

    Get PDF
    At present, the environmental risk assessment of major accidents is mainly carried out for stationary risk sources. Only marginal attention is paid to mobile risk sources, while the currently available methodologies require a relevant expertise and time for their application, which is only partially possible in most scenarios. In the present study, an integrated approach to environmental risk assessment in the transport of hazardous substances (iTRANSRISK) was developed. The approach proposed is based on the principle of index-based assessment of leakage scenarios involving toxic and flammable substances during transport, in the context of indexing environmental vulnerability. The key point of the method is the conversion of local-specific data concerning the risk potential of the transported substance, the consequences and the probability of a major accident, and environmental vulnerability assessment into a single entity. The created integral approach is proposed for the needs of carriers of the hazardous substances and the state administration bodies. The proposed approach is determined for the screening risk assessment at the beginning of the process of the planning a suitable transport routes and the results are for information only. An example of the application of the iTRANSRISK integrated approach is demonstrated considering an explosion scenario following a propane tanker leak (18 t) in a forested area, with moderately susceptible soils and no surface water or groundwater affected

    an experimental investigation into the operation of an electrically heated tobacco system

    Get PDF
    Abstract An experimental investigation of the thermal processes taking place in the tobacco substrate of a recently developed multicomponent electrically heated tobacco product (EHTP) that is part of an electrically heated tobacco system (EHTS – also referred to as the Tobacco Heating System 2.2) was carried out. Temperature profiles in the tobacco substrate of the EHTP were characterized using thermocouples positioned at different distances from the heater surface. The average maximum temperature of the tobacco measured 0.2 mm from the heater's surface wa

    Thermal Transient Measurements of an Ultra-Low-Power MOX Sensor

    Get PDF
    This paper describes a system for the simultaneous dynamic control and thermal characterization of the heating of an Ultra Low Power (ULP) micromachined sensor. A Pulse Width Modulated (PWM) powering system has been realized using a microcontroller to characterize the thermal behavior of a device. Objectives of the research were to analyze the relation between the time period and duty cycle of the PWM signal and the operating temperature of such ULP micromachined systems, to observe the thermal time constants of the device during the heating phase and to measure the total thermal conductance. Constant target heater resistance experiments highlighted that an approximately constant heater temperature at regime can only be obtained if the time period of the heating signal is smaller than 50 s. Constant power experiments show quantitatively a thermal time constant that decreases during heating in a range from 2.3 ms to 2 ms as a function of an increasing temperature rise between the ambient and the operating temperature. Moreover, we calculated the total thermal conductance. Finally, repeatability of experimental results was assessed by guaranteeing the standard deviation of the controlled temperature which was within C in worst case conditions

    ViDA: a VlasovDArwin solver for plasma physics at electron scales

    Get PDF
    We present a Vlasov–DArwin numerical code (ViDA) specifically designed to address plasma physics problems, where small-scale high accuracy is requested even during the nonlinear regime to guarantee a clean description of the plasma dynamics at fine spatial scales. The algorithm provides a low-noise description of proton and electron kinetic dynamics, by splitting in time the multi-advection Vlasov equation in phase space. Maxwell equations for the electric and magnetic fields are reorganized according to the Darwin approximation to remove light waves. Several numerical tests show that ViDA successfully reproduces the propagation of linear and nonlinear waves and captures the physics of magnetic reconnection. We also discuss preliminary tests of the parallelization algorithm efficiency, performed at CINECA on the Marconi-KNL cluster. ViDA will allow the running of Eulerian simulations of a non-relativistic fully kinetic collisionless plasma and it is expected to provide relevant insights into important problems of plasma astrophysics such as, for instance, the development of the turbulent cascade at electron scales and the structure and dynamics of electron-scale magnetic reconnection, such as the electron diffusion region

    Profile of a Cohort of 78 Italian Patients with Mucous Membrane Pemphigoid: Correlation Between Reactivity Profile and Clinical Involvement

    Get PDF
    Direct diagnosis of mucous membrane pemphigoid (MMP) is not easy. Circulating autoantibodies targeting bullous pemphigoid antigens of 180 kDa and 230 kDa (BP180 and BP230), \u3b16\u3b24 integrin, laminin 332 and type VII collagen (Col VII) are not always present. The aims of this study were to characterize the humoral immune response of a cohort of Italian patients with MMP, its association with clinical involvement and severity, and to design an algorithm for efficient serological diagnosis. Seventy-eight MMP sera were studied retrospectively by indirect immunofluorescence on salt-split skin, enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Indirect immunofluorescence on salt-split skin resulted in the most sensitive approach for diagnosis of MMP. BP180 was the major autoantigen in MMP patients with oral and cutaneous involvement. Significant associations were found between BP180 reactivity and oral and cutaneous localization of the lesions (p\u2009=\u20090.006), and between Col VII positivity and Setterfield severity score (p\u2009=\u20090.020)

    Sub-grid modeling of pitch-angle diffusion for ion-scale waves in hybrid-Vlasov simulations with Cartesian velocity space

    Get PDF
    Numerical simulations have grown to play a central role in modern sciences over the years. The ever-improving technology of supercomputers has made large and precise models available. However, this accuracy is often limited by the cost of computational resources. Lowering the simulation's spatial resolution in order to conserve resources can lead to key processes being unresolved. We have shown in a previous study how insufficient spatial resolution of the proton cyclotron instability leads to a misrepresentation of ion dynamics in hybrid-Vlasov simulations. This leads to larger than expected temperature anisotropy and loss-cone shaped velocity distribution functions. In this study, we present a sub-grid numerical model to introduce pitch-angle diffusion in a 3D Cartesian velocity space, at a spatial resolution where the relevant wave-particle interactions were previously not correctly resolved. We show that the method is successfully able to isotropize loss-cone shaped velocity distribution functions, and that this method could be applied to simulations in order to save computational resources and still correctly model wave-particle interactions.Peer reviewe

    Catalytic Supercritical Water Gasification of Refuse Derived Fuel for High Energy Content Fuel Gas

    Get PDF
    Refuse derived fuel (RDF) was processed using hydrothermal gasification at high temperature to obtain a high energy content fuel gas. Supercritical water gasification of RDF was conducted at a temperature of 500 °C and 29 MPa pressure and also in the presence of a solid RuO2/γ-Al2O3 catalyst. The effect of residence time (0, 30 and 60 min) and different ruthenium loadings (5, 10, 20 wt% RuO2/γ-Al2O3) were investigated. Up to 93 % carbon gasification efficiency was achieved in the presence of 20 wt% RuO2/γ-Al2O3 catalyst. The fuel gas with the highest energy value of 22.5 MJ Nm−3 was produced with the 5 wt% RuO2/γ-Al2O3 catalyst after 30 min reaction time. The results were compared with the use of NaOH as a homogeneous catalyst. When NaOH was used, the maximum gross calorific value of the product gas was 32.4 MJ Nm−3 at 60 min reaction time as a result of CO2 fixation. High yields of H2 and CH4 were obtained in the presence of both the NaOH and RuO2/γ-Al2O3 catalysts
    corecore