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Numerical simulations have grown to play a central role in modern sciences over the

years. The ever improving technology of supercomputers has made large and precise

models available. However, this accuracy is often limited by the cost of computa-

tional resources. Lowering the simulation’s spatial resolution in order to conserve

resources can lead to key processes being unresolved. We have shown in a previ-

ous study how insufficient spatial resolution of the proton cyclotron instability leads

to a misrepresentation of ion dynamics in hybrid-Vlasov simulations. This leads to

larger than expected temperature anisotropy and loss-cone shaped velocity distribu-

tion functions. In this study, we present a sub-grid numerical model to introduce

pitch-angle diffusion in a 3D Cartesian velocity space, at a spatial resolution where

the relevant wave-particle interactions were previously not correctly resolved. We

show that the method is successfully able to isotropize loss-cone shaped velocity dis-

tribution functions, and that this method could be applied to simulations in order to

save computational resources and still correctly model wave-particle interactions.

a)Electronic mail: maxime.dubart@helsinki.fi
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I. INTRODUCTION

Modern sciences rely heavily on numerical simulations. They can provide detailed de-

scriptions of physical processes, either in synergy with observations to understand complex

phenomena, or in cases where long, expensive and often specific in situ experiments or obser-

vations are not available. However, a trade-off exists between the accuracy of the simulated

model and the cost of computational resources, and ultimately the feasibility of the simula-

tion. This trade-off is often the main limiting factor. In near-Earth space simulations, this

often impacts the ability to resolve key plasma instabilities, such as the proton cyclotron

instability1–3 and the mirror instability4–7. These two instabilities are important sources of

energy transfer and dissipation in the Earth’s magnetosheath8, and arise from temperature

anisotropy of the ions. We showed previously9 that the proton cyclotron instability is not

resolved in the Earth’s magnetosheath at low spatial resolution in hybrid-Vlasov simula-

tions, i.e. ∆r = 900 km, resulting in the dominance of mirror-like structures and inducing

a depletion of phase space density in the ”loss-cone” region10. This in turn gives rise to a

higher than expected temperature anisotropy. While the proton cyclotron instability is cor-

rectly resolved at higher resolutions such as ∆r = 300 km, this is too numerically expensive

for large 3D global hybrid-Vlasov simulations to be performed given the currently available

computational resources. Therefore we have developed a method to model the effect of the

proton cyclotron instability on the velocity distribution functions, without increasing the

resolution of the simulation, which we present here.

The proton cyclotron instability1–3 is excited by a temperature anisotropy where the ion

perpendicular temperature T⊥ is larger than the parallel temperature T∥. It isotropises ions

in the magnetosheath through pitch-angle scattering11. This diffusion occurs along the di-

rection of the pitch-angle θ, the angle between the vector of the particle velocity and the

magnetic field. It is governed by the pitch-angle diffusion coefficient Dµµ, where µ = cos θ is

called the pitch-cosine. This coefficient is a key input to the Fokker-Planck equation, which

describes the evolution of plasmas, and is usually estimated using quasi-linear theory12.

Multiple simulations have also been used to evaluate Dµµ, such as in the Earth’s radiation

belt to calculate electron diffusion13, using test particles in magnetohydrodynamic (MHD)

simulations14, in Particle-in-Cell (PiC) simulations15, or using distribution functions in hy-

brid simulations16. They have also been extended to model the diffusion itself, either using
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MHD17,18 or PiC15 simulations. However, the spatial resolution used in these simulations is

designed to resolve scales in which pitch-angle scattering occurs. This can be an issue for

larger global simulations.

Sub-grid models can be developed to resolve scales inaccessible by the main simulation

grid. A sub-grid model evolves with a separate time step with respect to the main grid of

the simulation. At each simulation time step, the sub-grid model is performed, solving the

small-scale processes the main simulation cannot resolve. Sub-grid models are frequently

used in astrophysical plasmas, for example to model fluid scales in interstellar medium19,

unresolved energies20 or including kinetic physics into MHD models21. They are also largely

used in meteorological models (e.g. 22 and 23).

In this study we propose a sub-grid model for pitch-angle diffusion in 3D velocity space

for hybrid-Vlasov simulations. We do so by mapping the 3D Cartesian velocity space to a 2D

(µ, v) space, where v is the plasma velocity. We test the method in a simple test case without

spatial propagation of the plasma to ensure it diffuses correctly. We then extend this method

in a case with spatial propagation of the plasma. The purpose of the model is to reduce

the temperature anisotropy in the simulation. Additionally, we require this model to evolve

the initial anisotropic bi-Maxwellian velocity distribution function (VDF) towards a more

isotropic distribution, as pitch-angle scattering would do, ensuring the physical processes at

play are simulated correctly.

II. GLOBAL HYBRID-VLASOV MODEL

We performed this study using the Vlasiator model. Vlasiator is a hybrid-Vlasov plasma

simulation code producing high-fidelity simulations of near-Earth space24–26. The global

configuration consists of a Cartesian 2D or 3D spatial grid containing the Earth’s magneto-

sphere, magnetosheath, bow shock and foreshock. A uniform Cartesian 3D velocity space

grid is contained within each of the ordinary space cells, where the ions (which are simpli-

fied to protons in most runs) are described as velocity distribution functions f(vx, vy, vz).

In order to save on resources, Vlasiator uses a sparse phase space mechanism25. This mech-

anism ensures that velocity cells with a phase space density beneath the sparsity threshold

fthreshold are discarded, or “emptied”, preventing the model from having to save the whole

velocity space. The model solves the time evolution of the protons in phase space by solving
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the Vlasov equation, coupled with the electric and magnetic fields. The electromagnetic

fields are propagated using Maxwell’s equations in Darwin’s approximation27. Closure of

the system is performed with the generalised Ohm’s law including the Hall and electron

pressure terms. Electrons are considered an adiabatic, massless, charge-neutralising fluid.

The Vlasiator model, and hybrid-Vlasov simulations in general, have the advantage of being

noise-free26, unlike Particle-in-Cell simulations.

In this study however, instead of performing global magnetospheric simulation runs, we

present results from our diffusion method in a small simulation box. First, we validate our

method in the smallest, simplest test case possible. Then we apply this method to a more

advanced case where we initialise the velocity distribution functions with a loss-cone, and

with spatial extents large enough to ensure the apparition of the wave modes of interest.

This setup is meant to mimic the situation demonstrated in Ref. 9, where a loss-cone has

formed due to the simulation not resolving the proton cyclotron instability. We also compare

this setup with an identical one where the proton cyclotron instability is resolved. Therefore,

we build three different setups:

• Configuration 1 consists of a single 3D cubic cell in ordinary space, with width ∆r =

900 km. The spatial domain is set to have periodic boundary conditions. The spatial

cell contains a 3D Cartesian velocity space grid, consisting of 268 velocity cells in each

dimension. Each cubic velocity cell has a width of ∆V = 30 km/s. The sparsity

threshold is set to fthreshold = 10−14 m−6 s3. The magnetic field is initialised as B =

Bex, with B = 17 nT. The initial proton density is n = 3.0 cm−3 and the initial

anisotropic temperature is set to Tx = 5.8 MK, Ty = 23.2 MK and Tz = 23.2 MK.

This setup ensures that no spatial propagation of plasma occurs inside the simulation,

i.e. we only allow the velocity space to evolve, unaffected by electric and magnetic

fields.

• In Configuration 2, the ordinary space contains 32 cells in both the X-direction and

the Y-direction, extending from X = 0 to X = 28800 km and from Y = 0 to Y =

28800 km, and one cell in the Z-direction. Each cell has a width of ∆r = 900 km. The

initial magnetic field and temperature are identical to Configuration 1 and initialised

uniform throughout the simulation domain. The boundary conditions are set to be

periodic in all three directions. The velocity grid cell is identical to Configuration 1,
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with the exception that we initialise the velocity distribution functions with an artificial

loss-cone by setting the phase-space density to 0 when µ ≤ −0.5 or µ ≥ 0.5. Due to this

initialisation, the initial density in the simulation is n = 2.26 cm−3. We initialise each

simulation cell with a random normal distributed bulk velocity fluctuation of amplitude

5 km s−1, in order to trigger perturbations. In this setup, spatial propagation and

electromagnetic field transport happen as normally in the Vlasiator model. These

conditions are favorable to the development of the proton cyclotron instability3,28, if

the spatial resolution were to allow it. However, the resolution of ∆r = 900 km is

deliberately chosen so that “the range of k-vectors the simulation is able to model is

not large enough to allow the proton cyclotron instability to grow”9. Therefore, we

expect only the presence of mirror modes in this configuration, similar to Panels (i)-(l)

in Fig. 8 of Ref. 9. We enable our artificial diffusion method in this configuration.

• Configuration 3 is identical to Configuration 2, but each cell in ordinary space has a

width of ∆r = 300 km. The spatial domain extends from X = 0 to X = 9600 km

and from Y = 0 to Y = 9600 km, and contains one cell in the Z-direction. The

initial magnetic field, density, temperature, and boundary conditions are identical to

Configuration 2. The velocity distribution functions are also initialised with a loss-

cone. These conditions are favorable for the development of both the proton cyclotron

and mirror instabilities. This configuration is simulated without artificial diffusion.

III. METHOD

A. Artificial pitch-angle diffusion evaluated in (µ,v) space

Because Vlasiator uses a Cartesian discretization for its 3D velocity space grid, we ini-

tialise configuration 1 of our simulation with a bi-Maxwellian distribution function described

as follows, in order to trigger the desired instabilities:

f 3D
cart(v∥, v⊥) =

(
m

2πkB

)3/2 n

T
1/2
∥ T⊥

exp

[
− m

2kB

(
v2∥
T∥

+
v2⊥
T⊥

)]
, (1)

with m the proton mass, kB the Boltzmann constant, v⊥ and T⊥ are the components of

the velocity and temperature of the plasma perpendicular to the magnetic field direction,

and v∥ and T∥ are the components of the velocity and temperature of the plasma parallel
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to the magnetic field direction. However, with a spatial resolution of ∆r = 900 km such

as in configuration 1, the proton cyclotron instability cannot develop and trigger pitch-

angle diffusion as expected. Here, we assume that diffusive pitch-angle scattering of charged

particles is the dominant process of diffusion in the unresolved small scales of our simulation

domain11,16. Therefore, we build a sub-grid model to introduce pitch-angle diffusion in

velocity space by explicitly using the pitch-angle diffusion equation derived from the Fokker-

Planck equation12,16

∂f 2D
µv (µ, v, t)

∂t
=

∂

∂µ

[
(1− µ2)Dµµ

∂f 2D
µv (µ, v, t)

∂µ

]
, (2)

where Dµµ is the diffusion coefficient. Eq. 2 uses a 2D distribution function in (µ, v) space

defined as29

f 2D
µv (µ, v) =

1√
2π

(
m

kB

)3/2 nv2

T
1/2
∥ T⊥

exp

[
− m

2kB

(
v2µ2

T∥
+

v2(1− µ2)

T⊥

)]
. (3)

The transformation relations between Eq. 1 and Eq. 3 are given by29

f 2D
µv (µ, v) = 2πv2f 3D

cart(vµ, v
√
1− µ2) (4)

where the factor 2πv2 results from the Jacobian determinant for the transformation to the

(µ, v) space29. Here we use v∥ = µv and v⊥ = v
√
1− µ2, and

n =
∫

dvf 3D
cart(v∥, v⊥) =

∫ 1

−1

∫ ∞

0
f 2D
µv (µ, v)dvdµ (5)

T∥ =
m

nkB

∫
dvv2∥f

3D
cart(v∥, v⊥) =

m

nkB

∫ 1

−1

∫ ∞

0
v2µ2f 2D

µv (µ, v)dvdµ (6)

T⊥ =
m

2nkB

∫
dvv2⊥f

3D
cart(v∥, v⊥) =

m

2nkB

∫ 1

−1

∫ ∞

0
v2(1− µ2)f 2D

µv (µ, v)dvdµ. (7)

From a numerical point of view, we now need to map the 3D Cartesian velocity distribu-

tion function f 3D
cart(vx, vy, vz) into the 2D (µ, v) space, in order to be able to use Eq. 2. First,

we discretize the (µ, v) space with a grid consisting of Nµ×Mv bins. When we choose how

to discretize the (µ, v) space, two cases are to be considered:

• Undersampling: The discretization of the (µ, v) space is determined such that the

width of a bin in µ would cover a large range of this parameter. These would result

in 3D velocity space cells with significantly differing values of (µ, v) to be mapped to

the same (µ, v) bin. This would then lead to a loss of information about the state of

the velocity space, erroneous approximations, and ultimately obscuring the physics at

play.
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• Oversampling: The discretization of the (µ, v) space is determined such that there

would be more bins than required to describe the Cartesian 3D velocity space, and thus

some (µ, v) bins would remain empty. This needs to be considered for the calculation

of the derivatives in Eq. 2. Numerical derivatives need to be calculated using the

closest non-zero neighbors in order to avoid local extrema introduced by empty bins,

and thus possible inaccurate derivatives.

We then map the 3D Cartesian velocity space into the 2D (µ, v) space. In this process,

we assume the distribution to be mostly gyrotropic, which is a fair estimate in plasmas

experiencing significant pitch-angle diffusion. For each cell in velocity space, we calculate

its velocity v in the plasma frame by subtracting the bulk velocity. We also calculate its

pitch-cosine µ = v∥/v. Each velocity cell is then mapped to its corresponding (µ, v)-bin,

including the Jacobian factor of 2πv2 according to Eq. 4. We finally normalize the total

value of f 2D
µv (µ, v) in each bin by the count of cells mapped into each bin.

We now calculate the first and second order derivatives in the pitch-angle diffusion equa-

tion. For numerical efficiency, we discretize the first and second derivatives separately. As

a first simplifying assumption, we consider Dµµ to be a constant independent of µ, v or t

here:
∂f 2D

µv (µ, v, t)

∂t
= Dµµ

[
−2µ

∂f 2D
µv (µ, v, t)

∂µ
+ (1− µ2)

∂2f 2D
µv (µ, v, t)

∂µ2

]
. (8)

The model thus provides an averaged, effective Dµµ value for the whole velocity space.

For each bin f 2D
µv (µi, vj), both derivatives are calculated accounting for the possibility of

oversampling:
∂f 2D

µv (µi, vj, t)

∂µ
=

f 2D
µv (µi+R, vj, t)− f 2D

µv (µi−L, vj, t)

(R + L)∆µ
(9)

∂2f 2D
µv (µi, vj, t)

∂µ2
=

1
R+L
2

∆µ

[
f 2D
µv (µi+R, vj, t)− f 2D

µv (µi, vj, t)

R∆µ
−

f 2D
µv (µi, vj, t)− f 2D

µv (µi−L, vj, t)

L∆µ

]
.

(10)

Here, ∆µ is the size of a bin in µ. R and L designate the distance in units of ∆µ between

the bin f(µi, vj, t) and its first neighbouring bin onto which a nonzero amount of velocity

space cells has been mapped, such that µi+R > µi > µi−L. If R ̸= L, the derivatives would

be slightly offset, and not centered at the grid index in (µ, v) space. However in Vlasiator,

we discretize the velocity space as a cell averaged phase-space density. This means that, in

7



the case of oversampling of (µ, v) space, the grid covers a larger volume in the (µ, v) space,

and the derivatives are evaluated at the centre point of this (µ, v) space volume instead.

Therefore the derivatives are accurate considering the appropriate volume. We would like to

point out that large discrepancies in R and L are very uncommon, as can be seen in Fig. 2a,

as we discretize the (µ, v) space to avoid oversampling. According to Eq. 4, the amount of

diffusion occurring in the Cartesian velocity space for each f 3D
cart(v, t) cell is then:

∂f 3D
cart(v, t)

∂t
=

1

2πv2
∂f 2D

µv (µ, v, t)

∂t
(11)

using its corresponding, previously mapped ∂tf
2D
µv (µ, v, t).

B. Diffusion sub-stepping

The method described above is performed for every spatial cell in the simulation, at every

simulation time step ∆tS. ∂tf
3D
cart(v, t) varies greatly between velocity space cells. In order

to ensure that any changes to phase-space cells are an accurate description of the diffusion

equation, we introduce diffusion sub-stepping. The diffusion process is modeled with its

own separate time step ∆tD ≤ ∆tS. For each velocity space cell, we limit the discretized

proportional change ∂f/f per sub-step ∆tD to a constant C. In the case of this simulation,

C was chosen ad-hoc to be equal to 10%. ∆tD is chosen so that no velocity-space cell can

diffuse more than the set limit with the formulation

∆tD = min

(
C

f 3D
cart(v, t)

|∂tf 3D
cart(v, t)|

)
. (12)

For values of f below the sparsity threshold, we use the value fthreshold in evaluating the

maximum change in f . The diffusion time step ∆tD is not allowed to exceed the simulation

time step ∆tS. After ∂tf is computed, the model updates the value of each cell in velocity

space as:

f 3D
cart(v, t+∆tD) = f 3D

cart(v, t) +
∂f 3D

cart(v, t)

∂t
∆tD. (13)

IV. VALIDATION

Fig. 1 displays the mathematical evaluation of Eq. 3 and the right-hand side of Eq. 2

in the (µ, v) plane in Panels (a) and (c), and their 3D Cartesian equivalents in the (vx, vy)
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FIG. 1. Representation of the mathematical evaluation of: Eq. 3 (Panel (a)), which displays the

distribution function f(µ, v) in 2D (µ, v) space; Eq. 1 (Panel (b)), which displays the distribution

function f(v) in 3D Cartesian velocity space in the (vx, vy) plane; the right-hand side of Eq. 2

(Panel (c)), which displays the rate of change ∂tf(µ, v) in (µ, v) space; and Eq. 11 divided by f

(Panel (d)), which displays the rate of change ∂tf(v) compared to the original value of f from

Panel (b), in 3D Cartesian velocity space in the (vx, vy) plane. All equations used Dµµ = 0.01 s−1

and n, T⊥ and T∥ as indicated in Configuration 1.

plane, in Panels (b) and (d). We used the arbitrary value of Dµµ = 0.01 s−1. The values of

n, T⊥ and T∥ are the same as indicated in Configuration 1. In Panel (c), mass is transported

in the 2D (µ, v) space from regions close to µ = 0, highlighted by ∂tf(µ, v) < 0, towards

regions with µ ± 1, highlighted by ∂tf(µ, v) > 0 in these regions. Equivalently, in the 3D

Cartesian space displayed in Panel (d), phase-space density is transported from regions with

vx close to 0 km s−1 towards regions with non-zero vx, as expected by pitch-angle diffusion.

The initialisation of the numerical application of the method in Configuration 1 can be

seen in Fig. 2(a)-(f). Here we choose the same diffusion coefficient Dµµ = 0.01 s−1 as for the
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previously mentioned mathematical evaluation. We divide the (µ, v) space with 30 bins in µ

and 200 bins in v. Panels (e) and (f) display slices of a bi-Maxwellian velocity distribution

function with T∥ < T⊥ along two Cartesian directions. Panel (a) displays this distribution

after mapping to the (µ, v) plane. Panel (b) displays the evaluation of ∂tf(µ, v) at the first

step of the simulation. Panels (c) and (d) highlight the amount of the initial distribution

which diffuses according to Eq. 11, as slices of the VDF along two Cartesian planes. Panels

(a), (b) and (d) are quantitatively consistent with the mathematical evaluation displayed in

Fig. 1 and show that the numerical method has been applied successfully at the initial step.

We then launch the simulation, running the Vlasov solver and performing artificial diffu-

sion. After 15 s have elapsed, the previously anisotropic velocity distribution function has

diffused into a more isotropic distribution, as depicted in Panels (k) and (l) of Fig. 2. The

distribution in the (µ, v) space has diffused from µ = 0 towards µ = ±1, as predicted in

Fig. 1. The diffusion process has slowed down in the core of the distribution, as highlighted

in Panels (i) and (j), as well as in Panel (g) in the (µ, v) space. The derivatives in Panel (h)

have decreased in amplitude, indicating that the distribution approaches isotropy and that

the method diffuses less as time passes. Our method has been successful in isotropizing the

initial velocity distribution function in a simple test case configuration, through pitch-angle

diffusion. The Multimedia view for Fig. 2 highlights the diffusion of the distribution from

µ = 0 towards µ = ±1, controlled by the sub-stepping method. New neighboring velocity

cells are initialised as necessary.

We now perform a quantitative check in order to verify that our method models correctly

the evolution of the temperature anisotropy T∥/T⊥. We run an idealised numerical test where

we initialise a 2D distribution function with Eq. 3, compute the derivatives as in Eq. 8, then

evaluate the anisotropy using Eq. 6 and Eq. 7 for 12 s using a time step ∆t = 0.001 s. The

results of this test are then compared with the temperature anisotropy given by Vlasiator

during the simulation of the diffusion in Configuration 1. We perform this test for several

values of Dµµ = 0.1, 0.05, 0.01, 0.005 and 0.001 s−1. The results are displayed in Fig. 3.

Both the idealised test and the simulation provide the same evolution of the temperature

anisotropy over time, for each value of the diffusion coefficient.

We now apply the diffusion method in Configuration 2, where ∆r = 900 km, and com-

pare it to Configuration 3, where ∆r = 300 km. Both setups are initialised by setting

the phase-space density to 0 when µ ≤ −0.5 or µ ≥ 0.5 in order to mimic the situation
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FIG. 2. Panels (a)-(f): initial time step of the diffusion test in Configuration 1. Panels (g)-(l):

diffusion test in Configuration 1 after 15 s of simulation have elapsed. Panels (a) and (g) display

the distribution function in the (µ, v) space. Panels (b) and (h) display the first time derivative

∂tf(µ, v). Panels (c) and (i) display the proportional derivative ∂tf(v)/f(v) in the (vy, vz) plane.

Panels (d) and (j) display the proportional derivative ∂tf(v)/f(v) in the (vx, vy) plane. Panels

(e) and (k) display the velocity distribution function f(v) in the Cartesian velocity space, in the

(vy, vz) plane. Panels (f) and (l) display the velocity distribution function f(v) in the Cartesian

velocity space, in the (vx, vy) plane. The entire diffusion process can be seen on the Multimedia

view.

depicted in Fig. 8 of Ref. 9. In Configuration 2, we enable the diffusion method with

Dµµ = 0.035 s−1, whereas in Configuration 3, the simulation follows its course as normally

in the Vlasiator model, without artificial diffusion, and allowing the simulation to trigger the
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FIG. 3. Comparison of the temperature anisotropy over time between the idealised 2-D diffusion

(black) and the simulation (dashed red), for different values of the diffusion coefficient.

proton cyclotron and the mirror instabilities self-consistently. Panel (a) of Fig. 4 displays

in orange the maximum growth rate γ/ωci of the proton cyclotron instability for Config-

uration 3, where ωci = qB/m ≈ 0.163 s−1 is the cyclotron frequency, with q the proton

charge and m the proton mass. This growth rate was obtained with the HYbrid Dispersion

RelatiOn Solver (HYDROS)30. Panel (a) also displays the compressional (dotted green) and

non-compressional (solid green) fluctuations of the magnetic field for the same simulation,

respectively ⟨δB̂2
C⟩ and ⟨δB̂2

NC⟩, with

⟨δB̂2
C⟩ = ⟨(∥B∥ −B0)

2⟩ (14)

⟨δB̂2
NC⟩ = ⟨∥B−B0∥2⟩ (15)

where the brackets denote the spatial average over all simulation cells. As shown in Ref. 9,

two types of instabilities occur at this spatial resolution: the proton cyclotron instability,

which gives rise to Electro-Magnetic Ion Cyclotron waves and can be approximated as non-

compressional waves, and the mirror instability, which gives rise to compressional waves.

Panel (b) displays the simulation averaged temperature anisotropy ⟨T∥/T⊥⟩ for both Con-
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figuration 2 (in red) and Configuration 3 (in blue). The initial growth rate γ/ωci ≈ 0.675

indicates that the simulation is indeed favorable to the development of the proton cyclotron

instability. The magnetic fluctuations highlight that both wave modes grow as time passes.

Wave power grows according to the growth rate, but is not yet strong enough to trigger the

diffusion process, as highlighted by the grey region. Pitch-angle diffusion is then triggered

at t ≈ 8 s when the fluctuations are sufficiently strong. Isotropisation begins rougly at this

time and lasts until the magnetic fluctuations reach a maximum, around t ≈ 14.4 s, high-

lighted by the dotted vertical line. The plasma then becomes stable, and the temperature

anisotropy no longer evolves towards 1, having reached a maximum of T∥/T⊥ ≈ 0.74. In the

case of Configuration 2, the artificial diffusion is enabled at t = 0 s. Therefore, no waves

need to grow in the simulation for the isotropisation process to be triggered, and it starts

immediately. In order to better compare both simulations, we shifted the red curve dis-

playing the temperature anisotropy for Configuration 2 to the time where the isotropisation

process starts in the case of Configuration 3, at t ≈ 8 s. We can thus see that, for this

particular value of Dµµ, both diffusion phases isotropise the temperature during the same

time span, approximately 7 s. However, in the case of Configuration 2, the temperature

anisotropy does not reach a plateau at T∥/T⊥ ≈ 0.74 but rather keeps approaching a value

of 1 when both parallel and perpendicular temperatures reach the same value.

Whilst Fig. 4 displays the result of the process averaged over the whole simulation domain,

Fig. 5 shows what happens to a single VDF during both simulations. Panels (a)-(c) display

the velocity distribution function in the (vx, vy) plane in Configuration 2 at t = 0, 2 and 12 s,

respectively. Panels (d)-(f) display the velocity distribution function in the (vx, vy) plane in

Configuration 3 at t = 0, 10 and 20 s, respectively. The delay of 8 s has been taken based on

Fig. 4 for better comparison between the two setups. Both simulations are initialized with a

loss-cone, as shown in Panels (a) and (d). Panels (b) and (e) display a time step during the

isotropization process, where phase-space density is transported from µ = 0 towards µ± 1,

as expected. Panels (c) and (f) show the distributions after the end of the isotropization

process, when the temperature anisotropy has reached a value closest to 1 and the plasma

has become stable.
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FIG. 4. Panel (a): Evolution with time of the compressional (dotted green) and non-compressional

(solid green) magnetic fluctuations ⟨δB̄2⟩, averaged over the whole simulation domain, in Config-

uration 3 with ∆r = 300 km, and evolution of the maximum growth rate γ/ωci (orange) of the

proton cyclotron instability with time also in Configuration 3, calculated with HYDROS. Panel

(b): comparison of the evolution with time of the temperature anisotropy ⟨T∥/T⊥⟩, averaged over

the whole simulation domain, in Configuration 2 with ∆r = 900 km (red) and Configuration 3

with ∆r = 300 km (blue). The red curve is shifted forward by 8 s for easier comparison with the

blue curve. The grey rectangle highlights the region prior to 8 s during which the growth rate is

constant.

V. DISCUSSION

In this paper, we develop a pitch-angle diffusion method suitable for a Cartesian velocity

space to be used as a sub-grid model in hybrid-Vlasov simulations. We map the Velocity

Distribution Functions from the 3D Cartesian space to the 2D (µ, v) space. We evaluate

the derivatives according to Eq. 2. We then map back to the 3D Cartesian velocity space
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FIG. 5. Panels (a)-(c): Evolution of the velocity distribution function in the (vx, vy) plane for

t = 0 s (a), t = 2.0 s (b) and t = 12.0 s (c), in Configuration 2 for ∆r = 900 km with artificial

diffusion enabled. Panels (d)-(f): Evolution of the velocity distribution function in the (vx, vy)

plane for t = 0 s (a), t = 10.0 s (b) and t = 20.0 s (c), in Configuration 3 for ∆r = 300 km without

artificial diffusion. The time steps for Panels (b) and (e) and Panels (c) and (f) differ by 8 s to

account for the shift described in Fig. 4.

and apply the derivatives according to Eq. 11. We test our method first on a single VDF to

check that the diffusion occurs as expected, then in a larger test with an initial loss-cone in

order to verify that the VDFs are isotropized as expected.

In this study, we make the assumption that pitch-angle diffusion is the dominant process

of diffusion at play in our simulation domain. The neglect of the energy diffusion is not

valid in all conditions for the case of ion-cyclotron waves. The underlying assumption in our

model, is that the ion-cyclotron waves necessary to reproduce the high resolution saturation

are parallel propagating (k⊥ = 0). In the frame of the wave, the following quantity is

conserved

(v∥ − ω/k∥)
2 + v2⊥ = E (16)

and for particles in the tail of the distributions with v∥ ≫ ω/k, the scattering is predom-
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inantly in pitch-angle. Kennel and Engelman31 provide a heuristic estimate for the time

scale associated with energy diffusion TE and the time scale associated with pitch-angle dif-

fusion Tα and demonstrate that TE/Tα ≃ Ω/ω ≫ 1 in this limit. The assumption of parallel

propagating ion-cyclotron waves is consistent with high resolution Vlasiator simulations of

the magnetosheath9.

Fig. 2 highlights that, in the most simple case without spatial propagation and electro-

magnetic field transport, our method is consistent with the predicted analytical solution

displayed in Fig. 1. The method has diffused accordingly, from pitch-angles µ = 0 towards

µ = ±1, and the anisotropic VDF in Panel (f) became isotropic in Panel (l). Fig. 3 confirms

as well that our method provides the same evolution of the temperature anisotropy than in

the case of an idealised 2D diffusion.

Fig. 4 displays a comparison of our method with a test case with parameters similar

to those used in the study of the proton cyclotron instability in Ref. 9. This shows that

our method is able to reproduce the isotropization process triggered by the proton cyclotron

instability after the growth of the corresponding waves, and that the plasma reaches stability.

Fig. 5 highlights that, in a case where spatial propagation and electromagnetic field

transport occur, our method is able to diffuse from an initial loss-cone in the VDF for

Configuration 2 with ∆r = 900 km (Panels (a)-(c)) to a Maxwellian VDF, where the loss-

cone has disappeared, in the same manner as the proton cyclotron instability triggers pitch-

angle diffusion for Configuration 3 with ∆r = 300 km (Panels (d)-(f)). This confirms that,

in the case where the proton cyclotron instability is not resolved by the simulation due to the

spatial resolution, our method is able to isotropise the VDF in order to simulate the effect

of the instability on the VDF, similar to Fig. 8 of Ref. 9. We note that the VDF in Panel (e)

shows some deviation from a completely gyrotropic distribution, also called agyrotropy. We

have calculated the averaged agyrotropy QAG over the simulation (not shown) according to

Ref. 32. QAG = 0 indicates a completely gyrotropic distribution while QAG = 1 indicates a

maximal deviation from gyrotropy. The agyrotropy reaches a maximum of QAG ≈ 2.2 10−2

during the diffusion process, and drops down to QAG ≈ 10−3 once the plasma reaches a stable

state. The intermediate value of order 10−2 is transient, and these levels of agyrotropy are

low, thus we conclude that they are in agreement with our initial hypothesis. This is also

in agreement with values calculated within the magnetosheath, presented by Ref. 33 using

a Vlasiator simulation.
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However, our method is unable to reproduce the final value of the temperature anisotropy

presented in the simulation with Configuration 3 in Fig. 4. In this case, the proton cyclotron

instability shows stronger magnetic fluctuations than the mirror instability34. Therefore,

the proton cyclotron instability isotropizes ions faster than the mirror instability and will

consume the available free energy before the mirror instability35. In our simulation, it does

so before reaching T∥/T⊥ = 1. There is thus no remaining energy available to reduce the

anisotropy further. In the case of Configuration 2, the proton cyclotron instability cannot

develop, and the artificial diffusion reduces the temperature anisotropy according to Eq. 2

until T∥/T⊥ = 1. This shows that a constant value of Dµµ is insufficient to model perfectly

the diffusion process and that our method needs to be further supplemented by a mechanism

to determine an appropriate Dµµ value based on the physical conditions at any given time

step.

Because Vlasiator uses a 3D Cartesian velocity space, one could argue that a method ap-

plying the diffusion directly in this 3D Cartesian space could be developed. We discuss here

our attempt to build such a model. Such a model would not need to make any assumptions

of gyrotropy. Appendix A details the calculations used to transform the diffusion equation

Eq. 9 in (µ, v) space into a diffusion equation in 3D Cartesian space (Eq. A16). The imple-

mentation of the diffusion sub-stepping for the Cartesian method is identical to the method

in (µ, v) space. While the calculation of the derivatives at the initial time step is similar to

the method in (µ, v) space and Fig. 2, the Cartesian method presents numerical artefacts

later into the simulation. As the initial steps of the Cartesian method behave as expected,

we conclude the equations to be correct. However, the numerical implementation, using

a simple explicit advance with first-order time-stepping and central difference derivatives

is likely the source of the error propagation. Moreover, the Cartesian method requires a

derivation specific to the direction of the magnetic field, a constraint the primary presented

method does not suffer from. A benefit of evaluating derivatives in the (µ, v) space is that

the direction of the magnetic field is managed only when calculating µ and not an inherent

part of the equations. It also requires fewer derivatives to be computed, as the Cartesian

method requires the first and second derivatives in all three directions.

We showed that the method of diffusion in (µ, v) space is able to accurately reproduce the

pitch-angle diffusion process on a VDF in the 3D Cartesian velocity space of a hybrid-Vlasov

simulation. With this model acting on a sub-grid scale, one can palliate the absence of the
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proton cyclotron instability at lower resolution in the large global runs, such as depicted

in Ref. 9 for magnetosheath simulations. This would remove the loss-cone in the VDF

and reduce the temperature anisotropy in the simulation, while maintaining a low spatial

resolution. While we only demonstrated the feasibility of the method here, we showed the

limitations of using an arbitrary diffusion coefficient. In order to use the method in realistic

magnetosheath conditions, a further study should concentrate on evaluating an accurate

diffusion coefficient, using methods such as in Ref. 16 for hybrid-Vlasov simulations. This

coefficient and its application should be dependent on plasma properties both spatially and

temporally. Fig. 4 also highlights that it should be damped and not diffuse beyond the

availability of wave power.

This method can be used in specific parts of simulations, allowing faster simulation at a

lower resolution while still modelling correctly the magnetosheath. A future study should

focus on the effect of such a sub-grid model on the global physics of a larger system, such

as in the Earth’s magnetosheath. This is even more relevant in the case of large, global 3D

simulations. This method could also be extended to different diffusion processes such as

processes which depend on v or µ, assuming the corresponding description of the diffusion

equation is implemented.

VI. CONCLUSIONS

This paper presents a sub-grid model for pitch-angle diffusion in velocity space for hybrid-

Vlasov simulations with a Cartesian velocity space, which we demonstrate using Vlasiator.

The model solves the pitch-angle diffusion equation derived from the Fokker-Planck equation

under the quasi-linear approximation by mapping the 3D Cartesian velocity space into a 2D

(µ, v) space. We then evaluate this approach in a small simulation box without spatial

propagation of the plasma. We conclude that the (µ, v) approach successfully reduces the

temperature anisotropy and isotropises the velocity distribution function. We then tested

the (µ, v) approach in a second setup, this time enabling the spatial propagation of the

plasma. We again conclude that our model is efficient at correcting the previously formed

loss-cone observed in Ref. 9, which forms when there is no pitch-angle diffusion.

Our model could be used to describe pitch-angle diffusion where the proton cyclotron

instability is not resolved at low spatial resolution in hybrid-Vlasov simulations. It could
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be extended to large global simulations, in 2D or 3D, and utilised in combination with

Adaptive Mesh Refinement, where sparse numerical resources are crucial to perform these

simulations. This model could also be extended to various types of diffusion. This model

therefore enables simulations to evaluate key plasma processes in near-Earth space in a

computationally efficient way.
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Appendix A: Diffusion equation in Cartesian space

We start from Eq. 8 for the diffusion equation:

∂f(µ, t)

∂t
= Dµµ

(
−2µ

∂f

∂µ
+ (1− µ2)

∂2f

∂µ2

)
. (A1)

We first use the transformation:

µ = cos θ (A2)

v∥ = µv (A3)

v⊥ = v
√
1− µ2. (A4)

Here we consider B = Bex. The first derivative in µ is given by:

∂

∂µ
=

∂v∥
∂µ

∂

∂v∥
+

∂v⊥
∂µ

∂

∂v⊥

= v
∂

∂v∥
− v

µ√
1− µ2

∂

∂v⊥
. (A5)

The second derivative in µ can be expressed in terms of the velocity derivatives as:

∂2

∂µ2
= v

∂

∂µ

∂

∂v∥
− v

∂

∂v⊥


√
1− µ2 + µ2√

1−µ2

1− µ2

− v
∂

∂µ

∂

∂v⊥

µ√
1− µ2
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= v
∂

∂µ

∂

∂v∥
− v

∂

∂v⊥

[
1

(1− µ2)3/2
+

µ√
1− µ2

∂

∂µ

]

= v2
∂2

∂v2∥
− v2

∂

∂v⊥

∂

∂v∥

µ√
1− µ2

− v
∂

∂v⊥

1

(1− µ2)3/2
− v2

∂

∂v⊥

∂

∂v∥

µ√
1− µ2

+v2
∂2

∂v2⊥

µ2

1− µ2
(A6)

∂2

∂µ2
= v2

∂2

∂v2∥
− 2v2

∂

∂v⊥

∂

∂v∥

µ√
1− µ2

− v
∂

∂v⊥

1

(1− µ2)3/2
+ v2

∂2

∂v2⊥

µ2

1− µ2
. (A7)

The diffusion equation 8 then becomes:

∂f

∂t
= Dµµ

−2µv
∂f

∂v∥
+ 2v

µ2

√
1− µ2

∂f

v⊥
+ (1− µ2)

v2∂2f

∂v2∥

−2v2
µ√

1− µ2

∂2f

∂v⊥∂v∥
− v

1

(1− µ2)3/2
∂f

∂v⊥
+ v2

µ2

1− µ2

∂2f

∂v2⊥

)]
. (A8)

We now transform this equation into the Cartesian coordinates system:

∂

∂v∥
=

∂

∂vx
(A9)

∂2

∂v2∥
=

∂2

∂v2x
(A10)

∂

∂v⊥
= sinϕ

∂

∂vy
+ cosϕ

∂

∂vz
(A11)

∂2

∂v2⊥
=

v2z
v2z + v2y

∂2

∂v2z
+

2vzvy
v2z + v2y

∂2

∂vy∂vz
+

v2y
v2z + v2y

∂2

∂v2y
(A12)

∂2

∂v⊥v∥
= sinϕ

∂2

∂vy∂vx
+ cosϕ

∂2

∂vzvx
, (A13)

in this coordinate system, ϕ is the polar angle defined here as: ϕ = arctan(vy/vz) and so

does not depend on vx. Inputting this to Eq. A8:

∂f

∂t
= Dµµ

[
−2µv

∂f

∂vx
+ 2v

µ2

√
1− µ2

(
sinϕ

∂f

∂vy
+ cosϕ

∂f

∂vz

)
+ (1− µ2)v2

∂2f

∂v2x

−2v2µ
√
1− µ2

(
sinϕ

∂2f

∂vy∂vx
+ cosϕ

∂2f

∂vz∂vx

)
− v

1√
1− µ2

(
sinϕ

∂f

∂vy
+ cosϕ

∂f

∂vz

)

+v2µ2

(
v2z

v2z + v2y

∂2f

∂v2z
+ 2

vzvy
v2z + v2y

∂2f

∂vy∂vz
+

v2y
v2z + v2y

∂2f

∂v2y

)]
. (A14)

Replacing µ = vx/v gives:

∂f

∂t
= Dµµ

−2vx
∂f

∂vx
+ 2

v2x√
v2y + v2z

(
sinϕ

∂f

∂vy
+ cosϕ

∂f

∂vz

)
+ (v2y + v2z)

∂2f

∂v2x
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−2vx
√
v2y + v2z

(
sinϕ

∂2f

∂vy∂vx
+ cosϕ

∂2f

∂vz∂vx

)
− v2√

v2y + v2z

(
sinϕ

∂f

∂vy
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∂f
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)
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)]
. (A15)

The pitch-angle diffusion equation in Cartesian coordinates is therefore given by:

∂f

∂t
= Dµµ

−2vx
∂f

∂vx
+

2v2x − v2√
v2y + v2z

(
sinϕ

∂f

∂vy
+ cosϕ

∂f

∂vz

)

−2vx
√
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(
sinϕ

∂2f

∂vy∂vx
+ cosϕ

∂2f

∂vz∂vx

)

+2
v2xvzvy
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+ (v2y + v2z)

∂2f
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+

v2xv
2
z
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+
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2
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. (A16)
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