42 research outputs found

    Late pulmonary metastases of renal cell carcinoma immediately after post-transplantation immunosuppressive treatment: a case report

    Get PDF
    Introduction We report a case of pulmonary metastatic recurrence of renal adenocarcinoma soon after radical nephrectomy that was followed by renal transplant and immunosuppressive medication. Increased risk of metastatic recurrence of renal cell carcinoma should be considered in the immediate post-transplant period when immunosuppressive medication is administered, even if nephrectomy had been performed many years earlier.Case presentation In 1986 the patient demonstrated renal insufficiency secondary to mesangial glomerulonephritis. In 1992 he underwent left side radical nephrectomy with histopathological diagnosis of clear cell adenocarcinoma. Mesangial glomerulonephritis in the remaining right kidney progressed to end-stage renal failure. In October 2000 he received a kidney transplant from a cadaver and commenced immunosuppressive medication. Two months later, several nodules were found in his lungs, which were identified as metastases from the primary renal tumor that had been removed with the diseased kidney 8 years earlier.Conclusion Recurrence of renal cell carcinoma metastases points to tumor dormancy and reflects a misbalance between effective tumor immune surveillance and immune escape. This case demonstrates that a state of tumor dormancy can be interrupted soon after administration of immunosuppressant medication.This work was partially supported by the Fondo de Investigaciones Sanitarias (PI 02/0175), the plan Andaluz de Investigacion, and the Instituto de Salud Carlos III-Red de centros de Cancer, Spain

    Altered Insulin Receptor Signalling and β-Cell Cycle Dynamics in Type 2 Diabetes Mellitus

    Get PDF
    Insulin resistance, reduced β-cell mass, and hyperglucagonemia are consistent features in type 2 diabetes mellitus (T2DM). We used pancreas and islets from humans with T2DM to examine the regulation of insulin signaling and cell-cycle control of islet cells. We observed reduced β-cell mass and increased α-cell mass in the Type 2 diabetic pancreas. Confocal microscopy, real-time PCR and western blotting analyses revealed increased expression of PCNA and down-regulation of p27-Kip1 and altered expression of insulin receptors, insulin receptor substrate-2 and phosphorylated BAD. To investigate the mechanisms underlying these findings, we examined a mouse model of insulin resistance in β-cells – which also exhibits reduced β-cell mass, the β-cell-specific insulin receptor knockout (βIRKO). Freshly isolated islets and β-cell lines derived from βIRKO mice exhibited poor cell-cycle progression, nuclear restriction of FoxO1 and reduced expression of cell-cycle proteins favoring growth arrest. Re-expression of insulin receptors in βIRKO β-cells reversed the defects and promoted cell cycle progression and proliferation implying a role for insulin-signaling in β-cell growth. These data provide evidence that human β- and α-cells can enter the cell-cycle, but proliferation of β-cells in T2DM fails due to G1-to-S phase arrest secondary to defective insulin signaling. Activation of insulin signaling, FoxO1 and proteins in β-cell-cycle progression are attractive therapeutic targets to enhance β-cell regeneration in the treatment of T2DM

    Single nucleotide polymorphisms in DNA repair genes as risk factors associated to prostate cancer progression

    Get PDF
    Background Besides serum levels of PSA, there is a lack of prostate cancer specific biomarkers. It is need to develop new biological markers associated with the tumor behavior which would be valuable to better individualize treatment. The aim of this study was to elucidate the relationship between single nucleotide polymorphisms (SNPs) in genes involved in DNA repair and prostate cancer progression.Methods A total of 494 prostate cancer patients from a Spanish multicenter study were genotyped for 10 SNPs in XRCC1, ERCC2, ERCC1, LIG4, ATM and TP53 genes. The SNP genotyping was made in a Biotrove OpenArray® NT Cycler. Clinical tumor stage, diagnostic PSA serum levels, and Gleason score at diagnosis were obtained for all participants. Genotypic and allelic frequencies were determined using the web-based environment SNPator.Results SNPs rs11615 (ERCC1) and rs17503908 (ATM) appeared as risk factors for prostate cancer aggressiveness. Patients wild homozygous for these SNPs (AA and TT, respectively) were at higher risk for developing cT2b – cT4 (OR = 2.21 (confidence interval (CI) 95% 1.47 – 3.31), p < 0.001) and Gleason scores ≥ 7 (OR = 2.22 (CI 95% 1.38 – 3.57), p < 0.001), respectively. Moreover, those patients wild homozygous for both SNPs had the greatest risk of presenting D’Amico high-risk tumors (OR = 2.57 (CI 95% 1.28 – 5.16)).Conclusions Genetic variants at DNA repair genes are associated with prostate cancer progression, and would be taken into account when assessing the malignancy of prostate cancer.This work was subsidized by a grant from the Instituto de Salud Carlos III (Ministerio de Economía y Competitividad from Spain), ID: PI12/01867. Almudena Valenciano has a grant from the Instituto Canario de Investigación del Cáncer (ICIC)

    Protein Kinase C Delta (PKCδ) Affects Proliferation of Insulin-Secreting Cells by Promoting Nuclear Extrusion of the Cell Cycle Inhibitor p21Cip1/WAF1

    Get PDF
    BACKGROUND:High fat diet-induced hyperglycemia and palmitate-stimulated apoptosis was prevented by specific inhibition of protein kinase C delta (PKCδ) in β-cells. To understand the role of PKCδ in more detail the impact of changes in PKCδ activity on proliferation and survival of insulin-secreting cells was analyzed under stress-free conditions. METHODOLOGY AND PRINCIPAL FINDINGS:Using genetic and pharmacological approaches, the effect of reduced and increased PKCδ activity on proliferation, apoptosis and cell cycle regulation of insulin secreting cells was examined. Proteins were analyzed by Western blotting and by confocal laser scanning microscopy. Increased expression of wild type PKCδ (PKCδWT) significantly stimulated proliferation of INS-1E cells with concomitant reduced expression and cytosolic retraction of the cell cycle inhibitor p21(Cip1/WAF1). This nuclear extrusion was mediated by PKCδ-dependent phosphorylation of p21(Cip1/WAF1) at Ser146. In kinase dead PKCδ (PKCδKN) overexpressing cells and after inhibition of endogenous PKCδ activity by rottlerin or RNA interference phosphorylation of p21(Cip1/WAF1) was reduced, which favored its nuclear accumulation and apoptotic cell death of INS-1E cells. Human and mouse islet cells express p21(Cip1/WAF1) with strong nuclear accumulation, while in islet cells of PKCδWT transgenic mice the inhibitor resides cytosolic. CONCLUSIONS AND SIGNIFICANCE:These observations disclose PKCδ as negative regulator of p21(Cip1/WAF1), which facilitates proliferation of insulin secreting cells under stress-free conditions and suggest that additional stress-induced changes push PKCδ into its known pro-apoptotic role

    Novel inhibitors of the calcineurin/NFATc hub - alternatives to CsA and FK506?

    Get PDF
    The drugs cyclosporine A (CsA) and tacrolimus (FK506) revolutionized organ transplantation. Both compounds are still widely used in the clinic as well as for basic research, even though they have dramatic side effects and modulate other pathways than calcineurin-NFATc, too. To answer the major open question - whether the adverse side effects are secondary to the actions of the drugs on the calcineurin-NFATc pathway - alternative inhibitors were developed. Ideal inhibitors should discriminate between the inhibition of (i) calcineurin and peptidyl-prolyl cis-trans isomerases (PPIases; the matchmaker proteins of CsA and FK506), (ii) calcineurin and the other Ser/Thr protein phosphatases, and (iii) NFATc and other transcription factors. In this review we summarize the current knowledge about novel inhibitors, synthesized or identified in the last decades, and focus on their mode of action, specificity, and biological effects

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Increased nitric oxide (NO) production by antigen-presenting dendritic cells is responsible for low allogeneic mixed leucocyte reaction (MLR) in primary biliary cirrhosis (PBC)

    No full text
    The levels of blastogenesis in allogeneic MLR containing T cells from one normal volunteer and irradiated dendritic cells from 29 patients with PBC, 17 patients with chronic hepatitis type C (CH-C) and 22 allogeneic normal controls were compared to see if there is any role of antigen-presenting cells (APC) in the pathogenesis of PBC. The stimulatory capacity of dendritic cells from PBC was significantly lower compared with that of dendritic cells from CH-C (P < 0.05) and normal controls (P < 0.05), which could not be attributable either to the levels of expression of surface molecules, such as HLA-DR and CD86 on dendritic cells, or to the levels of cytokines, such as IL-10 and IL-12. Significantly higher levels of NO were seen in the allogeneic MLR supernatants containing dendritic cells from PBC compared with the supernatants from cultures containing dendritic cells from CH-C (P < 0.001) or normal controls (P < 0.001). Moreover, dendritic cells from PBC produced 10 times more NO compared with dendritic cells from CH-C and normal controls (21.9 ± 2.8 μmversus 1.6 ± 0.3 μm and 1.6 ± 0.3 μm, respectively; P < 0.001). The addition of NG-monomethyl-l-arginine monoacetate (L-NMMA), a known inhibitor of NO in allogeneic MLR containing dendritic cells from PBC, resulted in a significant decrease of NO and increase of blastogenesis. The selective impairment of dendritic cell function, increased production of NO by dendritic cells and restoration of blastogenesis using NO inhibitor in PBC have suggested a role for NO and dysfunction of dendritic cells in the pathogenesis of PBC. This inspires optimism that modulating the function of dendritic cells and controlling NO production, an improved therapeutic approach, might be planned for PBC
    corecore