6,915 research outputs found

    Low frequency sound propagation in activated carbon

    Get PDF
    Activated carbon can adsorb and desorb gas molecules onto and off its surface. Research has examined whether this sorption affects low frequency sound waves, with pressures typical of audible sound, interacting with granular activated carbon. Impedance tube measurements were undertaken examining the resonant frequencies of Helmholtz resonators with different backing materials. It was found that the addition of activated carbon increased the compliance of the backing volume. The effect was observed up to the highest frequency measured (500 Hz), but was most significant at lower frequencies (at higher frequencies another phenomenon can explain the behavior). An apparatus was constructed to measure the effective porosity of the activated carbon as well as the number of moles adsorbed at sound pressures between 104 and 118 dB and low frequencies between 20 and 55 Hz. Whilst the results were consistent with adsorption affecting sound propagation, other phenomena cannot be ruled out. Measurements of sorption isotherms showed that additional energy losses can be caused by water vapor condensing onto and then evaporating from the surface of the material. However, the excess absorption measured for low frequency sound waves is primarily caused by decreases in surface reactance rather than changes in surface resistance

    Heavy electrons and the symplectic symmetry of spin

    Full text link
    The recent discovery of two heavy fermion materials PuCoGa_{5} and NpPd_{5}Al_{2} which transform directly from Curie paramagnets into superconductors, reveals a new class of superconductor where local moments quench directly into a superconducting condensate. A powerful tool in the description of heavy fermion metals is the large N expansion, which expands the physics in powers of 1/N about a solvable limit where particles carry a large number (N) of spin components. As it stands, this method is unable to jointly describe the spin quenching and superconductivity which develop in PuCoGa_{5} and NpPd_{5}Al_{2}. Here, we solve this problem with a new class of large N expansion that employs the symplectic symmetry of spin to protect the odd time-reversal parity of spin and sustain Cooper pairs as well-defined singlets. With this method we show that when a lattice of magnetic ions exchange spin with their metallic environment in two distinct symmetry channels, they are able to simultaneously satisfy both channels by forming a condensate of composite pairs between between local moments and electrons. In the tetragonal crystalline environment relevant to PuCoGa_{5} and NpPd_{5}Al_{2} the lattice structure selects a natural pair of spin exchange channels, giving rise to the prediction of a unique anisotropic paired state with g-wave symmetry. This pairing mechanism predicts a large upturn in the NMR relaxation rate above T_{c}, a strong enhancement of Andreev reflection in tunneling measurements and an enhanced superconducting transition temperature T_{c} in Pu doped Np_{1-x}Pu_{x}Pd_{5}Al_{2}.Comment: This is a substantially revised version of the original paper, focussing on the high temperature heavy electron superconductors PuCoGa_5 and NpPd_5Al_2. A substantially revised supplementary online material to this paper can be found in arXiv 0710.1128v

    Investigating the Evidence of the Real-Life Impact of Acute Hyperglycaemia

    Get PDF
    Poorly controlled diabetes mellitus (DM) is associated with the development of long-term micro- and macro-vascular complications. The predominant focus of anti-diabetic therapy has been on lowering glycosylated haemoglobin levels, with a strong emphasis on fasting plasma glucose (particularly in Type 2 DM). There is considerable evidence indicating that post-meal hyperglycaemic levels are independently associated with higher risks of macro-vascular disease. Although some have identified mechanisms which may account for these observations, interventions which have specifically targeted postprandial glucose rises showed little or no effect in reducing cardiovascular risk. Clinical experience and some recent studies suggest acute hyperglycaemia affects cognition and other indicators of performance, equivalent to impairment seen during hypoglycaemia. In this brief report, we evaluated the published studies and argue that acute hyperglycaemia is worth investigating in relation to the real-life implications. In summary, evidence exists suggesting that acute hyperglycaemia may lead to impaired cognitive performance and productivity, but the relationship between these effects and daily activities remains poorly understood. Further research is required to enhance our understanding of acute hyperglycaemia in daily life. A better appreciation of clinically relevant effects of acute hyperglycaemia will allow us to determine whether it needs to be addressed by specific treatment

    The rate of X-ray-induced DNA double-strand break repair in the embryonic mouse brain is unaff ected by exposure to 50 Hz magnetic fi elds

    Get PDF
    Following in utero exposure to low dose radiation (10 – 200 mGy), we recently observed a linear induction of DNA double-strand breaks (DSB) and activation of apoptosis in the embryonic neuronal stem/progenitor cell compartment. No signifi cant induction of DSB or apoptosis was observed following exposure to magnetic fi elds (MF). In the present study, we exploited this in vivo system to examine whether exposure to MF before and after exposure to 100 mGy X-rays impacts upon DSB repair rates. Materials and methods : 53BP1 foci were quantifi ed following combined exposure to radiation and MF in the embryonic neuronal stem/progenitor cell compartment. Embryos were exposed in utero to 50 Hz MF at 300 m T for 3 h before and up to 9 h after exposure to 100 mGy X-rays. Controls included embryos exposed to MF or X-rays alone plus sham exposures. Results : Exposure to MF before and after 100 mGy X-rays did not impact upon the rate of DSB repair in the embryonic neuronal stem cell compartment compared to repair rates following radiation exposure alone. Conclusions : We conclude that in this sensitive system MF do not exert any signifi cant level of DNA damage and do not impede the repair of X-ray induced damage

    Sex-biased parental care and sexual size dimorphism in a provisioning arthropod

    Get PDF
    The diverse selection pressures driving the evolution of sexual size dimorphism (SSD) have long been debated. While the balance between fecundity selection and sexual selection has received much attention, explanations based on sex-specific ecology have proven harder to test. In ectotherms, females are typically larger than males, and this is frequently thought to be because size constrains female fecundity more than it constrains male mating success. However, SSD could additionally reflect maternal care strategies. Under this hypothesis, females are relatively larger where reproduction requires greater maximum maternal effort – for example where mothers transport heavy provisions to nests. To test this hypothesis we focussed on digger wasps (Hymenoptera: Ammophilini), a relatively homogeneous group in which only females provision offspring. In some species, a single large prey item, up to 10 times the mother’s weight, must be carried to each burrow on foot; other species provide many small prey, each flown individually to the nest. We found more pronounced female-biased SSD in species where females carry single, heavy prey. More generally, SSD was negatively correlated with numbers of prey provided per offspring. Females provisioning multiple small items had longer wings and thoraxes, probably because smaller prey are carried in flight. Despite much theorising, few empirical studies have tested how sex-biased parental care can affect SSD. Our study reveals that such costs can be associated with the evolution of dimorphism, and this should be investigated in other clades where parental care costs differ between sexes and species

    The rise of policy coherence for development: a multi-causal approach

    Get PDF
    In recent years policy coherence for development (PCD) has become a key principle in international development debates, and it is likely to become even more relevant in the discussions on the post-2015 sustainable development goals. This article addresses the rise of PCD on the Western donors’ aid agenda. While the concept already appeared in the work of Organisation for Economic Co-operation and Development (OECD) in the early 1990s, it took until 2007 before PCD became one of the Organisation’s key priorities. We adopt a complexity-sensitive perspective, involving a process-tracing analysis and a multi-causal explanatory framework. We argue that the rise of PCD is not as contingent as it looks. While actors such as the EU, the DAC and OECD Secretariat were the ‘active causes’ of the rise of PCD, it is equally important to look at the underlying ‘constitutive causes’ which enabled policy coherence to thrive well

    Eta Carinae and the Luminous Blue Variables

    Full text link
    We evaluate the place of Eta Carinae amongst the class of luminous blue variables (LBVs) and show that the LBV phenomenon is not restricted to extremely luminous objects like Eta Car, but extends luminosities as low as log(L/Lsun) = 5.4 - corresponding to initial masses ~25 Msun, and final masses as low as ~10-15 Msun. We present a census of S Doradus variability, and discuss basic LBV properties, their mass-loss behaviour, and whether at maximum light they form pseudo-photospheres. We argue that those objects that exhibit giant Eta Car-type eruptions are most likely related to the more common type of S Doradus variability. Alternative atmospheric models as well as sub-photospheric models for the instability are presented, but the true nature of the LBV phenomenon remains as yet elusive. We end with a discussion on the evolutionary status of LBVs - highlighting recent indications that some LBVs may be in a direct pre-supernova state, in contradiction to the standard paradigm for massive star evolution.Comment: 27 pages, 6 figures, Review Chapter in "Eta Carinae and the supernova imposters" (eds R. Humphreys and K. Davidson) new version submitted to Springe

    Theoretical survey of tidal-charged black holes at the LHC

    Full text link
    We analyse a family of brane-world black holes which solve the effective four-dimensional Einstein equations for a wide range of parameters related to the unknown bulk/brane physics. We first constrain the parameters using known experimental bounds and, for the allowed cases, perform a numerical analysis of their time evolution, which includes accretion through the Earth. The study is aimed at predicting the typical behavior one can expect if such black holes were produced at the LHC. Most notably, we find that, under no circumstances, would the black holes reach the (hazardous) regime of Bondi accretion. Nonetheless, the possibility remains that black holes live long enough to escape from the accelerator (and even from the Earth's gravitational field) and result in missing energy from the detectors.Comment: RevTeX4, 12 pages, 4 figures, 5 tables, minor changes to match the accepted version in JHE

    Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy

    Get PDF
    Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies
    corecore