71 research outputs found

    Vietnamese (Research Report #116)

    Get PDF
    This review discusses the experiences of Vietnamese in the region. This group that became prominent in the United States during the Vietnam War.https://digitalcommons.lsu.edu/agcenter_researchreports/1003/thumbnail.jp

    Asians (Research Report #117)

    Get PDF
    This is the third in a series of reviews. This review discusses the experiences of other Asians (not Vietnamese) in the region. Given the significant number of Vietnamese immigrants living in the southeastern United States, a vast body of literature in the social sciences has described, explored and explained the presence of Vietnamese immigrants living along the Gulf of Mexico.https://digitalcommons.lsu.edu/agcenter_researchreports/1004/thumbnail.jp

    Native Americans (Research Report #120)

    Get PDF
    This is the sixth in a series of reviews. This review discusses the experiences of Native Americans in the region – a group that was the foundation of the southeastern United States long before European or Spanish colonization. Although much of the documentation about American Indian history, migration and culture is fragmented, this group had substantial effects on the economy, culture and history of the southeastern United States.https://digitalcommons.lsu.edu/agcenter_researchreports/1007/thumbnail.jp

    Validation of an integrated pedal desk and electronic behavior tracking platform

    Get PDF
    Background This study tested the validity of revolutions per minute (RPM) measurements from the Pennington Pedal Desk™. Forty-four participants (73 % female; 39 ± 11.4 years-old; BMI 25.8 ± 5.5 kg/m2 [mean ± SD]) completed a standardized trial consisting of guided computer tasks while using a pedal desk for approximately 20 min. Measures of RPM were concurrently collected by the pedal desk and the Garmin Vector power meter. After establishing the validity of RPM measurements with the Garmin Vector, we performed equivalence tests, quantified mean absolute percent error (MAPE), and constructed Bland–Altman plots to assess agreement between RPM measures from the pedal desk and the Garmin Vector (criterion) at the minute-by-minute and trial level (i.e., over the approximate 20 min trial period). Results The average (mean ± SD) duration of the pedal desk trial was 20.5 ± 2.5 min. Measures of RPM (mean ± SE) at the minute-by-minute (Garmin Vector: 54.8 ± 0.4 RPM; pedal desk: 55.8 ± 0.4 RPM) and trial level (Garmin Vector: 55.0 ± 1.7 RPM; pedal desk: 56.0 ± 1.7 RPM) were deemed equivalent. MAPE values for RPM measured by the pedal desk were small (minute-by-minute: 2.1 ± 0.1 %; trial: 1.8 ± 0.1 %) and no systematic relationships in error variance were evident by Bland–Altman plots. Conclusion The Pennington Pedal Desk™ provides a valid count of RPM, providing an accurate metric to promote usage

    Dietary Supplementation with Conjugated Linoleic Acid Plus n-3 Polyunsaturated Fatty Acid Increases Food IntakeBrown Adipose Tissue in Rats

    Get PDF
    The effect of supplementation with 1% conjugated linoleic acid and 1% n-3 long chain polyunsaturated fatty acids (CLA/n-3) was assessed in rats. Food intake increased with no difference in body weights. White adipose tissue weights were reduced whereas brown adipose tissue and uncoupling protein-1 expression were increased. Plasma adiponectin, triglyceride and cholesterol levels were reduced while leptin, ghrelin and liver weight and lipid content were unchanged. Hypothalamic gene expression measurements revealed increased expression of orexigenic and decreased expression of anorexigenic signals. Thus, CLA/n-3 increases food intake without affecting body weight potentially through increasing BAT size and up-regulating UCP-1 in rats

    A G316A polymorphism in the ornithine decarboxylase gene promoter modulates MYCN-driven childhood neuroblastoma

    Get PDF
    Simple Summary Neuroblastoma is a devasting childhood cancer in which multiple copies (amplification) of the cancer-causing gene MYCN strongly predict poor outcome. Neuroblastomas are reliant on high levels of cellular components called polyamines for their growth and malignant behavior, and the gene regulating polyamine synthesis is called ODC1. ODC1 is often coamplified with MYCN, and in fact is regulated by MYCN, and like MYCN is prognostic of poor outcome. Here we studied a naturally occurring genetic variant or polymorphism that occurs in the ODC1 gene, and used gene editing to demonstrate the functional importance of this variant in terms of ODC1 levels and growth of neuroblastoma cells. We showed that this variant impacts the ability of MYCN to regulate ODC1, and that it also influences outcome in neuroblastoma, with the rarer variant associated with a better survival. This study addresses the important topic of genetic polymorphisms in cancer. Ornithine decarboxylase (ODC1), a critical regulatory enzyme in polyamine biosynthesis, is a direct transcriptional target of MYCN, amplification of which is a powerful marker of aggressive neuroblastoma. A single nucleotide polymorphism (SNP), G316A, within the first intron of ODC1, results in genotypes wildtype GG, and variants AG/AA. CRISPR-cas9 technology was used to investigate the effects of AG clones from wildtype MYCN-amplified SK-N-BE(2)-C cells and the effect of the SNP on MYCN binding, and promoter activity was investigated using EMSA and luciferase assays. AG clones exhibited decreased ODC1 expression, growth rates, and histone acetylation and increased sensitivity to ODC1 inhibition. MYCN was a stronger transcriptional regulator of the ODC1 promoter containing the G allele, and preferentially bound the G allele over the A. Two neuroblastoma cohorts were used to investigate the clinical impact of the SNP. In the study cohort, the minor AA genotype was associated with improved survival, while poor prognosis was associated with the GG genotype and AG/GG genotypes in MYCN-amplified and non-amplified patients, respectively. These effects were lost in the GWAS cohort. We have demonstrated that the ODC1 G316A polymorphism has functional significance in neuroblastoma and is subject to allele-specific regulation by the MYCN oncoprotein

    Y1 and Y5 Receptors Are Both Required for the Regulation of Food Intake and Energy Homeostasis in Mice

    Get PDF
    Neuropeptide Y (NPY) acting in the hypothalamus is one of the most powerful orexigenic agents known. Of the five known Y receptors, hypothalamic Y1 and Y5 have been most strongly implicated in mediating hyperphagic effects. However, knockout of individual Y1 or Y5 receptors induces late-onset obesity – and Y5 receptor knockout also induces hyperphagia, possibly due to redundancy in functions of these genes. Here we show that food intake in mice requires the combined actions of both Y1 and Y5 receptors. Germline Y1Y5 ablation in Y1Y5−/− mice results in hypophagia, an effect that is at least partially mediated by the hypothalamus, since mice with adult-onset Y1Y5 receptor dual ablation targeted to the paraventricular nucleus (PVN) of the hypothalamus (Y1Y5Hyp/Hyp) also exhibit reduced spontaneous or fasting-induced food intake when fed a high fat diet. Interestingly, despite hypophagia, mice with germline or hypothalamus-specific Y1Y5 deficiency exhibited increased body weight and/or increased adiposity, possibly due to compensatory responses to gene deletion, such as the decreased energy expenditure observed in male Y1Y5−/− animals relative to wildtype values. While Y1 and Y5 receptors expressed in other hypothalamic areas besides the PVN – such as the dorsomedial nucleus and the ventromedial hypothalamus – cannot be excluded from having a role in the regulation of food intake, these studies demonstrate the pivotal, combined role of both Y1 and Y5 receptors in the mediation of food intake

    NPY Neuron-Specific Y2 Receptors Regulate Adipose Tissue and Trabecular Bone but Not Cortical Bone Homeostasis in Mice

    Get PDF
    BACKGROUND: Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS: We thus generated two conditional knockout mouse models, Y2(lox/lox) and NPYCre/+;Y2(lox/lox), in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE: Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus, reducing lipogenic pathways in liver and/or skeletal muscle in females. These data also reveal as an anti-osteogenic effect of Y2 receptors on hypothalamic NPY-expressing neurons on trabecular but not on cortical bone

    Dermatite seborreica

    Full text link

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    Background and aims: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress and novel therapeutic response in PC to develop a biomarker driven therapeutic strategy targeting DDR and replication stress in PC. Methods: We interrogated the transcriptome, genome, proteome and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient derived xenografts and human PC organoids. Results: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, co-segregates with response to platinum (P < 0.001) and PARP inhibitor therapy (P < 0.001) in vitro and in vivo. We generated a novel signature of replication stress with which predicts response to ATR (P < 0.018) and WEE1 inhibitor (P < 0.029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < 0.001) but not associated with DDR deficiency. Conclusions: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR proficient PC, and post-platinum therapy
    corecore