2,351 research outputs found

    Mechanisms controlling primary and new production in a global ecosystem model ? Part I: The role of the large-scale upper mixed layer variability

    No full text
    International audienceA global general circulation model coupled to a simple six-compartment ecosystem model is used to study the extent to which global variability in primary and export production can be realistically predicted on the basis of advanced parameterizations of upper mixed layer physics, without recourse to introducing extra complexity in model biology. The ''K profile parameterization'' (KPP) scheme employed, combined with 6-hourly external forcing, is able to capture short-term periodic and episodic events such as diurnal cycling and storm-induced deepening. The model realistically reproduces various features of global ecosystem dynamics that have been problematic in previous global modelling studies, using a single generic parameter set. The realistic simulation of deep convection in the North Atlantic, and lack of it in the North Pacific and Southern Oceans, leads to good predictions of chlorophyll and primary production in these contrasting areas. Realistic levels of primary production are predicted in the oligotrophic gyres due to high frequency external forcing of the upper mixed layer (accompanying paper Popova et al., 2006) and novel parameterizations of zooplankton excretion. Good agreement is shown between model and observations at various JFOFS time series sites: BATS, KERFIX, Papa and station India. One exception is that the high zooplankton grazing rates required to maintain low chlorophyll in high-nutrient low-chlorophyll and oligotrophic systems lessened agreement between model and data in the northern North Atlantic, where mesozooplankton with lower grazing rates may be dominant. The model is therefore not globally robust in the sense that additional parameterizations were needed to realistically simulate ecosystem dynamics in the North Atlantic. Nevertheless, the work emphasises the need to pay particular attention to the parameterization of mixed layer physics in global ocean ecosystem modelling as a prerequisite to increasing the complexity of ecosystem models

    Toward an optimal search strategy of optical and gravitational wave emissions from binary neutron star coalescence

    Full text link
    Observations of an optical source coincident with gravitational wave emission detected from a binary neutron star coalescence will improve the confidence of detection, provide host galaxy localisation, and test models for the progenitors of short gamma ray bursts. We employ optical observations of three short gamma ray bursts, 050724, 050709, 051221, to estimate the detection rate of a coordinated optical and gravitational wave search of neutron star mergers. Model R-band optical afterglow light curves of these bursts that include a jet-break are extrapolated for these sources at the sensitivity horizon of an Advanced LIGO/Virgo network. Using optical sensitivity limits of three telescopes, namely TAROT (m=18), Zadko (m=21) and an (8-10) meter class telescope (m=26), we approximate detection rates and cadence times for imaging. We find a median coincident detection rate of 4 yr^{-1} for the three bursts. GRB 050724 like bursts, with wide opening jet angles, offer the most optimistic rate of 13 coincident detections yr^{-1}, and would be detectable by Zadko up to five days after the trigger. Late time imaging to m=26 could detect off-axis afterglows for GRB 051221 like bursts several months after the trigger. For a broad distribution of beaming angles, the optimal strategy for identifying the optical emissions triggered by gravitational wave detectors is rapid response searches with robotic telescopes followed by deeper imaging at later times if an afterglow is not detected within several days of the trigger.Comment: 6 pages, 1 figure, Accepted for publication in MNRAS Letters (2011 April 22

    Stabilizing non-trivial solutions of the generalized Kuramoto-Sivashinsky equation using feedback and optimal control

    Get PDF
    The problem of controlling and stabilizing solutions to the Kuramoto–Sivashinsky (KS) equation is studied in this paper. We consider a generalized form of the equation in which the effects of an electric field and dispersion are included. Both the feedback and optimal control problems are studied. We prove that we can control arbitrary non-trivial steady states of the KS equation, including travelling wave solutions, using a finite number of point actuators. The number of point actuators needed is related to the number of unstable modes of the equation. Furthermore, the proposed control methodology is shown to be robust with respect to changing the parameters in the equation, e.g. the viscosity coefficient or the intensity of the electric field. We also study the problem of controlling solutions of coupled systems of KS equations. Possible applications to controlling thin film flows are discussed. Our rigorous results are supported by extensive numerical simulations

    The North Atlantic subpolar circulation in an eddy-resolving global ocean model

    Get PDF
    The subpolar North Atlantic represents a key region for global climate, but most numerical models still have well-described limitations in correctly simulating the local circulation patterns. Here, we present the analysis of a 30-year run with a global eddy-resolving (1/12°) version of the NEMO ocean model. Compared to the 1° and 1/4° equivalent versions, this simulation more realistically represents the shape of the Subpolar Gyre, the position of the North Atlantic Current, and the Gulf Stream separation. Other key improvements are found in the representation of boundary currents, multi-year variability of temperature and depth of winter mixing in the Labrador Sea, and the transport of overflows at the Greenland–Scotland Ridge. However, the salinity, stratification and mean depth of winter mixing in the Labrador Sea, and the density and depth of overflow water south of the sill, still present challenges to the model. This simulation also provides further insight into the spatio-temporal development of the warming event observed in the Subpolar Gyre in the mid 1990s, which appears to coincide with a phase of increased eddy activity in the southernmost part of the gyre. This may have provided a gateway through which heat would have propagated into the gyre's interior

    Gravitational wave background from sub-luminous GRBs: prospects for second and third generation detectors

    Get PDF
    We assess the detection prospects of a gravitational wave background associated with sub-luminous gamma-ray bursts (SL-GRBs). We assume that the central engines of a significant proportion of these bursts are provided by newly born magnetars and consider two plausible GW emission mechanisms. Firstly, the deformation-induced triaxial GW emission from a newly born magnetar. Secondly, the onset of a secular bar-mode instability, associated with the long lived plateau observed in the X-ray afterglows of many gamma-ray bursts (Corsi & Meszaros 2009a). With regards to detectability, we find that the onset of a secular instability is the most optimistic scenario: under the hypothesis that SL-GRBs associated with secularly unstable magnetars occur at a rate of (48; 80)Gpc^{-3}yr^{-1} or greater, cross-correlation of data from two Einstein Telescopes (ETs) could detect the GW background associated to this signal with a signal-to-noise ratio of 3 or greater after 1 year of observation. Assuming neutron star spindown results purely from triaxial GW emissions, we find that rates of around (130;350)Gpc^{-3}yr^{-1} will be required by ET to detect the resulting GW background. We show that a background signal from secular instabilities could potentially mask a primordial GW background signal in the frequency range where ET is most sen- sitive. Finally, we show how accounting for cosmic metallicity evolution can increase the predicted signal-to-noise ratio for background signals associated with SL-GRBs.Comment: Accepted by MNRA

    Dopamine D_2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive 4 nicotinic receptors via a cholinergic-dependent mechanism

    Get PDF
    Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits (α4β2*) functionally interact with G-protein-coupled dopamine (DA) D_2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9'Ala) rendering 4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D_2-receptor agonist. When challenged with the D_(2)R agonist, quinpirole (0.5–10 mg/kg), Leu9'Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9'Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson’s disease, and the data suggest that a D_(2)R–α4*-nAChR functional interaction regulates cholinergic interneuron activity.—Zhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism

    Jizz and the joy of pattern recognition:virtuosity, discipline and the agency of insight in UK naturalists’ arts of seeing

    Get PDF
    Approaches to visual skilling from anthropology and STS have tended to highlight the forces of discipline and control in understanding how shared visual accounts of the world are created in the face of potential differences brought about by multi-sensorial perception. Drawing upon a range of observational and interview material from an immersion in naturalist training and biological recording activities between 2003 and 2009, I focus upon jizz, a distinct form of gestalt perception much coveted by naturalist communities in the UK. Jizz is described as a tacit and embodied way of seeing that instantaneously reveals the identity of a species, relying upon but simultaneously suspending the arduous and meticulous study of an organism’s diagnostic characteristics. I explore the potential and limitations of jizz to allow for both visual precision and an enchanted and varied form of encounter with nature. In so doing, I explore how the specific characteristics of wild, intangible and irreverent virtuoso performance work closely together with disciplining taxonomic standards. As such, discipline and irreverence work together, are mutually enabling, and allow for an accommodation rather than a segregation of potential difference brought about by perceptual variety

    Detection methods for non-Gaussian gravitational wave stochastic backgrounds

    Get PDF
    We address the issue of finding an optimal detection method for a discontinuous or intermittent gravitational wave stochastic background. Such a signal might sound something like popcorn popping. We derive an appropriate version of the maximum likelihood detection statistic, and compare its performance to that of the standard cross-correlation statistic both analytically and with Monte Carlo simulations. The maximum likelihood statistic performs better than the cross-correlation statistic when the background is sufficiently non-Gaussian. For both ground and space based detectors, this results in a gain factor, ranging roughly from 1 to 3, in the minimum gravitational-wave energy density necessary for detection, depending on the duty cycle of the background. Our analysis is exploratory, as we assume that the time structure of the events cannot be resolved, and we assume white, Gaussian noise in two collocated, aligned detectors. Before this detection method can be used in practice with real detector data, further work is required to generalize our analysis to accommodate separated, misaligned detectors with realistic, colored, non-Gaussian noise.Comment: 25 pages, 12 figures, submitted to physical review D, added revisions in response to reviewers comment
    corecore