45 research outputs found

    Clinical review: mechanical circulatory support for cardiogenic shock complicating acute myocardial infarction

    Get PDF
    Acute myocardial infarction is one of the 10 leading reasons for admission to adult critical care units. In-hospital mortality for this condition has remained static in recent years, and this is related primarily to the development of cardiogenic shock. Recent advances in reperfusion therapies have had little impact on the mortality of cardiogenic shock. This may be attributable to the underutilization of life support technology that may assist or completely supplant the patient's own cardiac output until adequate myocardial recovery is established or long-term therapy can be initiated. Clinicians working in the intensive care environment are increasingly likely to be exposed to these technologies. The purpose of this review is to outline the various techniques of mechanical circulatory support and discuss the latest evidence for their use in cardiogenic shock complicating acute myocardial infarction

    Early or late parenteral nutrition: ASPEN vs. ESPEN.

    Get PDF
    Background\ud Controversy exists about the timing of the initiation of parenteral nutrition (PN) in critically ill adults in whom caloric targets cannot be met by enteral nutrition (EN) alone.\ud \ud Methods\ud Objective\ud To compare early-initiation of PN (European guidelines) with late-initiation (American and Canadian guidelines) in adults who are receiving insufficient enteral nutrition in the intensive care unit (ICU).\ud \ud Design\ud Prospective, randomized, controlled, parallel-group, multicenter clinical trial.\ud \ud Setting\ud Seven multidisciplinary ICUs in Belgium.\ud \ud Subjects\ud All adults admitted to participating ICUs with a nutritional risk score of 3 or more who did not meet any exclusion criteria.\ud \ud Intervention\ud After enrollment, 2312 patients were randomized to receive PN 48 hours after ICU admission (early-initiation) and 2328 patients were randomized to receive PN on day 8 (late-initiation group). Both groups received early EN using a standardized protocol. PN was continued until EN met 80% of calorific goals, or when oral nutrition was resumed. It was restarted if enteral or oral feeding fell below 50% of calculated calorific needs.\ud \ud Outcomes\ud Primary end point was the duration of dependency on intensive care, defined as the number of intensive care days and time to discharge from the ICU.\ud \ud Results\ud The median stay in the ICU was one day shorter for the late-initiation group (3 v. 4; p = 0.02). The late-initiation group had a relative increase, of 6.3%, in the likelihood of being discharged earlier, and alive, from the ICU (hazard ratio 1.06; 95% confidence interval [CI] 1.00-1,13; p = 0.04). Rates of death in the ICU and survival at 90 days were similar between the two groups. The late-initiation group, as compared to the early-initiation group, had fewer ICU infections (22.8% v. 26.2%; p = 0.008), less days of renal replacement therapy (7 days (interquartile range [IQR] 3-16) v. 10 days (IQR 5-23); p = 0.008) and fewer patients requiring more than 2 days of mechanical ventilation (36.3% v. 40.2%; p = 0.006).\ud \ud Conclusions\ud Late-initiation of PN was associated with faster recovery and fewer complications, when compared with early-initiation.\ud \ud Trial Registration\ud NCT0051212

    Predicting mechanically ventilated patients future respiratory system elastance – A stochastic modelling approach

    Get PDF
    Background and objective: Respiratory mechanics of mechanically ventilated patients evolve significantly with time, disease state and mechanical ventilation (MV) treatment. Existing deterministic data prediction methods fail to comprehensively describe the multiple sources of heterogeneity of biological systems. This research presents two respiratory mechanics stochastic models with increased prediction accuracy and range, offering improved clinical utility in MV treatment. Methods: Two stochastic models (SM2 and SM3) were developed using retrospective patient respiratory elastance (Ers) from two clinical cohorts which were averaged over time intervals of 10 and 30 min respectively. A stochastic model from a previous study (SM1) was used to benchmark performance. The stochastic models were clinically validated on an independent retrospective clinical cohort of 14 patients. Differences in predictive ability were evaluated using the difference in percentile lines and cumulative distribution density (CDD) curves. Results: Clinical validation shows all three models captured more than 98% (median) of future Ers data within the 5th – 95th percentile range. Comparisons of stochastic model percentile lines reported a maximum mean absolute percentage difference of 5.2%. The absolute differences of CDD curves were less than 0.25 in the ranges of 5 < Ers (cmH2O/L) < 85, suggesting similar predictive capabilities within this clinically relevant Ers range. Conclusion: The new stochastic models significantly improve prediction, clinical utility, and thus feasibility for synchronisation with clinical interventions. Paired with other MV protocols, the stochastic models developed can potentially form part of decision support systems, providing guided, personalised, and safe MV treatment

    Protocol conception for safe selection of mechanical ventilation settings for respiratory failure patients

    Get PDF
    Background and Objective Mechanical ventilation is the primary form of care provided to respiratory failure patients. Limited guidelines and conflicting results from major clinical trials means selection of mechanical ventilation settings relies heavily on clinician experience and intuition. Determining optimal mechanical ventilation settings is therefore difficult, where non-optimal mechanical ventilation can be deleterious. To overcome these difficulties, this research proposes a model-based method to manage the wide range of possible mechanical ventilation settings, while also considering patient-specific conditions and responses. Methods This study shows the design and development of the “VENT” protocol, which integrates the single compartment linear lung model with clinical recommendations from landmark studies, to aid clinical decision-making in selecting mechanical ventilation settings. Using retrospective breath data from a cohort of 24 patients, 3,566 and 2,447 clinically implemented VC and PC settings were extracted respectively. Using this data, a VENT protocol application case study and clinical comparison is performed, and the prediction accuracy of the VENT protocol is validated against actual measured outcomes of pressure and volume. Results The study shows the VENT protocols’ potential use in narrowing an overwhelming number of possible mechanical ventilation setting combinations by up to 99.9%. The comparison with retrospective clinical data showed that only 33% and 45% of clinician settings were approved by the VENT protocol. The unapproved settings were mainly due to exceeding clinical recommended settings. When utilising the single compartment model in the VENT protocol for forecasting peak pressures and tidal volumes, median [IQR] prediction error values of 0.75 [0.31 – 1.83] cmH2O and 0.55 [0.19 – 1.20] mL/kg were obtained. Conclusions Comparing the proposed protocol with retrospective clinically implemented settings shows the protocol can prevent harmful mechanical ventilation setting combinations for which clinicians would be otherwise unaware. The VENT protocol warrants a more detailed clinical study to validate its potential usefulness in a clinical setting

    Effect of Convalescent Plasma on Organ Support-Free Days in Critically Ill Patients With COVID-19: A Randomized Clinical Trial

    Get PDF
    Importance: The evidence for benefit of convalescent plasma for critically ill patients with COVID-19 is inconclusive. Objective: To determine whether convalescent plasma would improve outcomes for critically ill adults with COVID-19. Design, Setting, and Participants: The ongoing Randomized, Embedded, Multifactorial, Adaptive Platform Trial for Community-Acquired Pneumonia (REMAP-CAP) enrolled and randomized 4763 adults with suspected or confirmed COVID-19 between March 9, 2020, and January 18, 2021, within at least 1 domain; 2011 critically ill adults were randomized to open-label interventions in the immunoglobulin domain at 129 sites in 4 countries. Follow-up ended on April 19, 2021. Interventions: The immunoglobulin domain randomized participants to receive 2 units of high-titer, ABO-compatible convalescent plasma (total volume of 550 mL ± 150 mL) within 48 hours of randomization (n = 1084) or no convalescent plasma (n = 916). Main Outcomes and Measures: The primary ordinal end point was organ support-free days (days alive and free of intensive care unit-based organ support) up to day 21 (range, -1 to 21 days; patients who died were assigned -1 day). The primary analysis was an adjusted bayesian cumulative logistic model. Superiority was defined as the posterior probability of an odds ratio (OR) greater than 1 (threshold for trial conclusion of superiority &gt;99%). Futility was defined as the posterior probability of an OR less than 1.2 (threshold for trial conclusion of futility &gt;95%). An OR greater than 1 represented improved survival, more organ support-free days, or both. The prespecified secondary outcomes included in-hospital survival; 28-day survival; 90-day survival; respiratory support-free days; cardiovascular support-free days; progression to invasive mechanical ventilation, extracorporeal mechanical oxygenation, or death; intensive care unit length of stay; hospital length of stay; World Health Organization ordinal scale score at day 14; venous thromboembolic events at 90 days; and serious adverse events. Results: Among the 2011 participants who were randomized (median age, 61 [IQR, 52 to 70] years and 645/1998 [32.3%] women), 1990 (99%) completed the trial. The convalescent plasma intervention was stopped after the prespecified criterion for futility was met. The median number of organ support-free days was 0 (IQR, -1 to 16) in the convalescent plasma group and 3 (IQR, -1 to 16) in the no convalescent plasma group. The in-hospital mortality rate was 37.3% (401/1075) for the convalescent plasma group and 38.4% (347/904) for the no convalescent plasma group and the median number of days alive and free of organ support was 14 (IQR, 3 to 18) and 14 (IQR, 7 to 18), respectively. The median-adjusted OR was 0.97 (95% credible interval, 0.83 to 1.15) and the posterior probability of futility (O

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    National survey of outcomes and practices in acute respiratory distress syndrome in Singapore

    Get PDF
    The authors acknowledge the following as the total funding sources for this study: 1. SICM NICER grant: logistical, non-monetary, support from the Society of Intensive Care Medicine Singapore. This was in the form of Ngee Ann Polytechnic students (8) who collected the data for the study for one month. 2. NMRC (National medical research council) grant for Dr, Matthew Cove (partial support for this study): This was in the shape of salary support for all his research related activity. (NMRC/TA/0015/2013) (MEC)

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    corecore