48 research outputs found

    The interplay between Src family kinases and receptor tyrosine kinases.

    Get PDF
    Src family tyrosine kinases (SFKs) are involved in a diverse array of physiological processes, as highlighted in this review. An overview of how SFKs interact with, and participate in signaling from, receptor tyrosine kinases (RTKs) is discussed. And also, how SFKs are activated by RTKs, and how SFKs, in turn, can activate RTKs, as well as how SFKs can promote signaling from growth factor receptors in a number of ways including participation in signaling pathways required for DNA synthesis, control of receptor turnover, actin cytoskeleton rearrangements and motility, and survival are discussed.Peer reviewe

    Platelet-derived growth factor stimulates Src-dependent mRNA stabilization of specific early genes in fibroblasts.

    Get PDF
    The Src family of protein-tyrosine kinases (SFKs) participates in a variety of signal transduction pathways, including promotion of cell growth, prevention of apoptosis, and regulation of cell interactions and motility. In particular, SFKs are required for the mitogenic response to platelet-derived growth factor (PDGF). However, it is not clear whether there is a discrete SFK-specific pathway leading to enhanced gene expression or whether SFKs act to generally enhance PDGF-stimulated gene expression. To examine this, we treated quiescent NIH3T3 cells with PDGF in the presence or absence of small molecule inhibitors of SFKs, phosphatidylinositol 3-kinase (PI3K), and MEK1/2. Global patterns of gene expression were analyzed by using Affymetrix Gene-Chip arrays, and data were validated by using reverse transcription-PCR and ribonuclease protection assay. We identified a discrete set of immediate early genes induced by PDGF and inhibited in the presence of the SFK-selective inhibitor SU6656. A subset of these SFK-dependent genes was induced by PDGF even in the presence of the MEK1/2 inhibitor U0126 or the PI3K inhibitor LY294002. By using ribonuclease protection assays and nuclear run-off assays, we further determined that PDGF did not stimulate the rate of transcription of these SFK-dependent immediate early genes but rather promoted mRNA stabilization. Our data suggest that PDGF regulates gene expression through an SFK-specific pathway that is distinct from the Ras-MAPK and PI3K pathways, and that SFKs signal gene expression by enhancing mRNA stability.Peer reviewe

    The novel adaptor protein Tks4 (SH3PXD2B) is required for functional podosome formation.

    Get PDF
    Metastatic cancer cells have the ability to both degrade and migrate through the extracellular matrix (ECM). Invasiveness can be correlated with the presence of dynamic actin-rich membrane structures called podosomes or invadopodia. We showed previously that the adaptor protein tyrosine kinase substrate with five Src homology 3 domains (Tks5)/Fish is required for podosome/invadopodia formation, degradation of ECM, and cancer cell invasion in vivo and in vitro. Here, we describe Tks4, a novel protein that is closely related to Tks5. This protein contains an amino-terminal Phox homology domain, four SH3 domains, and several proline-rich motifs. In Src-transformed fibroblasts, Tks4 is tyrosine phosphorylated and predominantly localized to rosettes of podosomes. We used both short hairpin RNA knockdown and mouse embryo fibroblasts lacking Tks4 to investigate its role in podosome formation. We found that lack of Tks4 resulted in incomplete podosome formation and inhibited ECM degradation. Both phenotypes were rescued by reintroduction of Tks4, whereas only podosome formation, but not ECM degradation, was rescued by overexpression of Tks5. The tyrosine phosphorylation sites of Tks4 were required for efficient rescue. Furthermore, in the absence of Tks4, membrane type-1 matrix metalloproteinase (MT1-MMP) was not recruited to the incomplete podosomes. These findings suggest that Tks4 and Tks5 have overlapping, but not identical, functions, and implicate Tks4 in MT1-MMP recruitment and ECM degradation.Peer reviewe

    The novel adaptor protein Tks4 (SH3PXD2B) is required for functional podosome formation.

    Get PDF
    Metastatic cancer cells have the ability to both degrade and migrate through the extracellular matrix (ECM). Invasiveness can be correlated with the presence of dynamic actin-rich membrane structures called podosomes or invadopodia. We showed previously that the adaptor protein tyrosine kinase substrate with five Src homology 3 domains (Tks5)/Fish is required for podosome/invadopodia formation, degradation of ECM, and cancer cell invasion in vivo and in vitro. Here, we describe Tks4, a novel protein that is closely related to Tks5. This protein contains an amino-terminal Phox homology domain, four SH3 domains, and several proline-rich motifs. In Src-transformed fibroblasts, Tks4 is tyrosine phosphorylated and predominantly localized to rosettes of podosomes. We used both short hairpin RNA knockdown and mouse embryo fibroblasts lacking Tks4 to investigate its role in podosome formation. We found that lack of Tks4 resulted in incomplete podosome formation and inhibited ECM degradation. Both phenotypes were rescued by reintroduction of Tks4, whereas only podosome formation, but not ECM degradation, was rescued by overexpression of Tks5. The tyrosine phosphorylation sites of Tks4 were required for efficient rescue. Furthermore, in the absence of Tks4, membrane type-1 matrix metalloproteinase (MT1-MMP) was not recruited to the incomplete podosomes. These findings suggest that Tks4 and Tks5 have overlapping, but not identical, functions, and implicate Tks4 in MT1-MMP recruitment and ECM degradation.Peer reviewe

    A Src-Tks5 Pathway Is Required for Neural Crest Cell Migration during Embryonic Development

    Get PDF
    In the adult organism, cell migration is required for physiological processes such as angiogenesis and immune surveillance, as well as pathological events such as tumor metastasis. The adaptor protein and Src substrate Tks5 is necessary for cancer cell migration through extracellular matrix in vitro and tumorigenicity in vivo. However, a role for Tks5 during embryonic development, where cell migration is essential, has not been examined. We used morpholinos to reduce Tks5 expression in zebrafish embryos, and observed developmental defects, most prominently in neural crest-derived tissues such as craniofacial structures and pigmentation. The Tks5 morphant phenotype was rescued by expression of mammalian Tks5, but not by a variant of Tks5 in which the Src phosphorylation sites have been mutated. We further evaluated the role of Tks5 in neural crest cells and neural crest-derived tissues and found that loss of Tks5 impaired their ventral migration. Inhibition of Src family kinases also led to abnormal ventral patterning of neural crest cells and their derivatives. We confirmed that these effects were likely to be cell autonomous by shRNA-mediated knockdown of Tks5 in a murine neural crest stem cell line. Tks5 was required for neural crest cell migration in vitro, and both Src and Tks5 were required for the formation of actin-rich structures with similarity to podosomes. Additionally, we observed that neural crest cells formed Src-Tks5-dependent cell protrusions in 3-D culture conditions and in vivo. These results reveal an important and novel role for the Src-Tks5 pathway in neural crest cell migration during embryonic development. Furthermore, our data suggests that this pathway regulates neural crest cell migration through the generation of actin-rich pro-migratory structures, implying that similar mechanisms are used to control cell migration during embryogenesis and cancer metastasis

    A frameshift at a mutational hotspot in the polyoma virus early region generates two new proteins that define T-antigen functional domains

    No full text
    A frameshift mutation, arising from the deletion of any one of nine consecutive cytidines in the region of Py DNA encoding both the midregion of large T-Ag and the C-terminal region of middle T-Ag, yields unstable flat cell revertants that synthesize two novel viral proteins in which shuffling of the different domains of the Py T-Ags has occurred. The first protein (37 kd) is a hybrid containing the N-terminus of large T-Ag and the hydrophobic C-terminus of middle T-Ag. The latter domain is responsible for membrane association, even in the 37 kd hybrid protein. The second protein (43 kd), which contains the N-terminal 75% of middle T-Ag, has an associated protein kinase activity and forms a complex with c-src, but cannot induce a transformed phenotype

    A cell-based high-content screening assay reveals activators and inhibitors of cancer cell invasion

    No full text
    Acquisition of invasive cell behavior underlies tumor progression and metastasis. To define in more molecular detail the mechanisms underlying invasive behavior, we developed a high throughput screening strategy to quantitate invadopodia; actin-rich membrane protrusions of cancer cells which contribute to tissue invasion and matrix remodeling. We developed a high content, imaged-based assay, and tested the LOPAC 1280 collection of pharmacologically active agents. We found compounds that potently inhibited invadopodia formation without overt toxicity, as well as compounds that increased invadopodia number. One of the two compounds that increased both invadopodia number and invasive behavior was the chemotherapeutic agent paclitaxel, which has potential clinical implications for its use in the neoadjuvant and resistance settings. Several of the invasion inhibitors were annotated as cyclin-dependent kinase (cdk) inhibitors. Loss-of-function experiments determined that Cdk5 was the relevant target. We further determined that the mechanism by which Cdk5 promotes both invadopodia formation and cancer invasion is by phosphorylation and down regulation of the actin regulatory protein caldesmon

    Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5.

    No full text
    Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5'RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene
    corecore