328 research outputs found

    Behavior of multitemporal and multisensor passive microwave indices in Southern Hemisphere ecosystems

    Get PDF
    ©2014. American Geophysical Union. All Rights Reserved. This study focused on the time series analysis of passive microwave and optical satellite data collected from six Southern Hemisphere ecosystems in Australia and Argentina. The selected ecosystems represent a wide range of land cover types, including deciduous open forest, temperate forest, tropical and semiarid savannas, and grasslands. We used two microwave indices, the frequency index (FI) and polarization index (PI), to assess the relative contributions of soil and vegetation properties (moisture and structure) to the observations. Optical-based satellite vegetation products from the Moderate Resolution Imaging Spectroradiometer were also included to aid in the analysis. We studied the X and Ka bands of the Advanced Microwave Scanning Radiometer-EOS and Wind Satellite, resulting in up to four observations per day (1:30, 6:00, 13:30, and 18:00-h). Both the seasonal and hourly variations of each of the indices were examined. Environmental drivers (precipitation and temperature) and eddy covariance measurements (gross ecosystem productivity and latent energy) were also analyzed. It was found that in moderately dense forests, FI was dependent on canopy properties (leaf area index and vegetation moisture). In tropical woody savannas, a significant regression (R2) was found between FI and PI with precipitation (R2->-0.5) and soil moisture (R2->-0.6). In the areas of semiarid savanna and grassland ecosystems, FI variations found to be significantly related to soil moisture (R2->-0.7) and evapotranspiration (R2->-0.5), while PI varied with vegetation phenology. Significant differences (p-<-0.01) were found among FI values calculated at the four local times. Key Points Passive microwave indices can be used to estimate vegetation moisture Microwave observations were supported by flux data Passive microwave indices could be used to estimate evapotranspiratio

    Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling

    Get PDF
    Exogenous dietary fat can induce obesity and promote diabetes, but endogenous fat production is not thought to affect skeletal muscle insulin resistance, an antecedent of metabolic disease. Unexpectedly, the lipogenic enzyme fatty acid synthase (FAS) was increased in the skeletal muscle of mice with diet-induced obesity and insulin resistance. Skeletal muscle–specific inactivation of FAS protected mice from insulin resistance without altering adiposity, specific inflammatory mediators of insulin signaling, or skeletal muscle levels of diacylglycerol or ceramide. Increased insulin sensitivity despite high-fat feeding was driven by activation of AMPK without affecting AMP content or the AMP/ATP ratio in resting skeletal muscle. AMPK was induced by elevated cytosolic calcium caused by impaired sarco/endoplasmic reticulum calcium ATPase (SERCA) activity due to altered phospholipid composition of the sarcoplasmic reticulum (SR), but came at the expense of decreased muscle strength. Thus, inhibition of skeletal muscle FAS prevents obesity-associated diabetes in mice, but also causes muscle weakness, which suggests that mammals have retained the capacity for lipogenesis in muscle to preserve physical performance in the setting of disrupted metabolic homeostasis

    Marine wild-capture fisheries after nuclear war

    Get PDF
    Unidad de excelencia MarĂ­a de Maeztu CEX2019-000940-MIdentificadors digitals: Digital object identifier for the 'European Research Council' (http://dx.doi.org/10.13039/501100000781) Digital object identifier for 'Horizon 2020' (http://dx.doi.org/10.13039/501100007601) - BIGSEA projectNuclear war, beyond its devastating direct impacts, is expected to cause global climatic perturbations through injections of soot into the upper atmosphere. Reduced temperature and sunlight could drive unprecedented reductions in agricultural production, endangering global food security. However, the effects of nuclear war on marine wild-capture fisheries, which significantly contribute to the global animal protein and micronutrient supply, remain unexplored. We simulate the climatic effects of six war scenarios on fish biomass and catch globally, using a state-of-the-art Earth system model and global process-based fisheries model. We also simulate how either rapidly increased fish demand (driven by food shortages) or decreased ability to fish (due to infrastructure disruptions), would affect global catches, and test the benefits of strong prewar fisheries management. We find a decade-long negative climatic impact that intensifies with soot emissions, with global biomass and catch falling by up to 18 ± 3% and 29 ± 7% after a US-Russia war under business-as-usual fishing-similar in magnitude to the end-of-century declines under unmitigated global warming. When war occurs in an overfished state, increasing demand increases short-term (1 to 2 y) catch by at most ∌30% followed by precipitous declines of up to ∌70%, thus offsetting only a minor fraction of agricultural losses. However, effective prewar management that rebuilds fish biomass could ensure a short-term catch buffer large enough to replace ∌43 ± 35% of today's global animal protein production. This buffering function in the event of a global food emergency adds to the many previously known economic and ecological benefits of effective and precautionary fisheries management

    Marine wild-capture fisheries after nuclear war

    Get PDF
    Nuclear war, beyond its devastating direct impacts, is expected to cause global climatic perturbations through injections of soot into the upper atmosphere. Reduced temperature and sunlight could drive unprecedented reductions in agricultural production, endangering global food security. However, the effects of nuclear war on marine wild-capture fisheries, which significantly contribute to the global animal protein and micronutrient supply, remain unexplored. We simulate the climatic effects of six war scenarios on fish biomass and catch globally, using a state-of-the-art Earth system model and global process-based fisheries model. We also simulate how either rapidly increased fish demand (driven by food shortages) or decreased ability to fish (due to infrastructure disruptions), would affect global catches, and test the benefits of strong prewar fisheries management. We find a decade-long negative climatic impact that intensifies with soot emissions, with global biomass and catch falling by up to 18 ± 3% and 29 ± 7% after a US–Russia war under business-as-usual fishing—similar in magnitude to the end-of-century declines under unmitigated global warming. When war occurs in an overfished state, increasing demand increases short-term (1 to 2 y) catch by at most ∌30% followed by precipitous declines of up to ∌70%, thus offsetting only a minor fraction of agricultural losses. However, effective prewar management that rebuilds fish biomass could ensure a short-term catch buffer large enough to replace ∌43 ± 35% of today’s global animal protein production. This buffering function in the event of a global food emergency adds to the many previously known economic and ecological benefits of effective and precautionary fisheries management

    Joint multi-field T1 quantification for fast field-cycling MRI

    Get PDF
    Acknowledgment This article is based upon work from COST Action CA15209, supported by COST (European Cooperation in Science and Technology). Oliver Maier is a Recipient of a DOC Fellowship (24966) of the Austrian Academy of Sciences at the Institute of Medical Engineering at TU Graz. The authors would like to acknowledge the NVIDIA Corporation Hardware grant support.Peer reviewedPublisher PD

    Sexual Behaviour and HPV Infections in 18 to 29 Year Old Women in the Pre-Vaccine Era in the Netherlands

    Get PDF
    Contains fulltext : 71058.pdf ( ) (Open Access)BACKGROUND: Infection with Human Papillomavirus (HPV) is a necessary event in the multi-step process of cervical carcinogenesis. Little is known about the natural history of HPV infection among unscreened young adults. As prophylactic vaccines are being developed to prevent specifically HPV 16 and 18 infections, shifts in prevalence in the post vaccine era may be expected. This study provides a unique opportunity to gather baseline data before changes by nationwide vaccination occur. METHODS AND PRINCIPAL FINDINGS: This cross-sectional study is part of a large prospective epidemiologic study performed among 2065 unscreened women aged 18 to 29 years. Women returned a self-collected cervico-vaginal specimen and filled out a questionnaire. All HPV DNA-positive samples (by SPF(10) DEIA) were genotyped using the INNO-LiPA HPV genotyping assay. HPV point prevalence in this sample was 19%. Low and high risk HPV prevalence was 9.1% and 11.8%, respectively. A single HPV-type was detected in 14.9% of all women, while multiple types were found in 4.1%. HPV-types 16 (2.8%) and 18 (1.4%) were found concomitantly in only 3 women (0.1%). There was an increase in HPV prevalence till 22 years. Multivariate analysis showed that number of lifetime sexual partners was the most powerful predictor of HPV positivity, followed by type of relationship, frequency of sexual contact, age, and number of sexual partners over the past 6 months. CONCLUSIONS AND SIGNIFICANCE: This study shows that factors independently associated with HPV prevalence are mainly related to sexual behaviour. Combination of these results with the relative low prevalence of HPV 16 and/or 18 may be promising for expanding the future target group for catch up vaccination. Furthermore, these results provide a basis for research on possible future shifts in HPV genotype prevalence, and enable a better estimate of the effect of HPV 16-18 vaccination on cervical cancer incidence
    • 

    corecore