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Purpose: Recent developments in hardware design enable the use of fast field-
cycling (FFC) techniques in MRI to exploit the different relaxation rates at very low 
field strength, achieving novel contrast. The method opens new avenues for in vivo 
characterizations of pathologies but at the expense of longer acquisition times. To 
mitigate this, we propose a model-based reconstruction method that fully exploits the 
high information redundancy offered by FFC methods.
Methods: The proposed model-based approach uses joint spatial information from 
all fields by means of a Frobenius - total generalized variation regularization. The 
algorithm was tested on brain stroke images, both simulated and acquired from FFC 
patients scans using an FFC spin echo sequences. The results are compared to three 
non-linear least squares fits with progressively increasing complexity.
Results: The proposed method shows excellent abilities to remove noise while main-
taining sharp image features with large signal-to-noise ratio gains at low-field im-
ages, clearly outperforming the reference approach. Especially patient data show 
huge improvements in visual appearance over all fields.
Conclusion: The proposed reconstruction technique largely improves FFC image 
quality, further pushing this new technology toward clinical standards.
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1  |   INTRODUCTION

The magnetic field dependency of the longitudinal and trans-
verse relaxation times, also referred to as nuclear magnetic 
relaxation dispersion (NMRD), provides insight into the un-
derlying structural order and dynamics of a wide range of 
molecular systems.1,2 In recent years, the T1 dispersion of 
protons in particular has experienced increased interest for 
the investigation of biomarkers related to various patholog-
ical processes.3-6 The field-dependent properties of such 
biomarkers are invisible to traditional MRI scanners, which 
operate only at one fixed main magnetic field strength and are 
restricted to the measurement of relaxation times correspond-
ing to the B0 field used. However, new MRI-derived technol-
ogies are emerging that allow exploring different magnetic 
fields within a single system. One such technology is fast 
field-cycling MRI, also known as FFC-MRI or FFC imag-
ing, which enables a modulation of the main magnetic field 
during an imaging sequence giving access to field-dependent 
relaxation properties as a novel contrast mechanism.7 FFC 
imaging derives from MRI but uses radically different tech-
nologies to generate the main magnetic field, and both types 
of scanner offer different views on biological tissues.

Indeed, varying the main magnetic field within a defined 
range requires dedicated hardware and various approaches 
exist to realize FFC imaging systems.8 In the clinical field 
range, FFC imaging is implemented by means of a B0 insert 
coil together with the superconducting magnet provided by a 
commercial MRI system for 1.5T,9-11 or 3T.12 This approach, 
also referred to as delta relaxation enhanced MR (dreMR), 
has auspicious applications for the detection and quantifica-
tion of contrast agents with increased specificity and sensi-
tivity.9,13-15 Several systems were also developed to access 
the endogenous T1 dispersion of tissues in the low-field re-
gime.16-20 Recently, a whole-body FFC scanner approved 
for clinical imaging studies was reported, capable of reach-
ing any field from 50 µT to 0.2T.21 Controlled variations of 
the magnetic field with this single resistive magnet design 
allow for multi-field T1 quantification over a wide range of 
field strength while retaining image quality down to ultra-low 
fields. Pilot studies show promising potential for innovations 
in the imaging of osteoarthritis,4 sarcoma,22 or brain stroke,21 
with potentially important applications in medicine as an in 
vivo assessment method of multi-field T1 and T1 dispersion 
information.

Compared to conventional MRI, implementation of fast 
field-cycling poses additional demands on power supplies, 
control electronics, magnet design, pulse sequences and 
image quality.8 Signal-to-noise ratio (SNR), therefore, is an 
important issue for FFC scanners to satisfy the latter. High 
fields benefit from an inherently high SNR as they rely on 
stable and homogeneous acquisition fields provided by su-
perconducting magnets. Although the SNR is not a limiting 

factor for the individual images, contrast in dreMR is ob-
tained by image subtraction and strongly depends on the T1 
dispersion of the contrast agent in use.23 The magnitude of 
the dreMR signal is rather small in comparison to the in-
dividual images (eg, about 2.5% in Ref. 12) and retaining 
sufficient high SNR may become an issue. Similarly, low-
field FFC imaging systems operate with acquisition fields of  
0.2 T or less, which limits the SNR compared to conventional 
clinical fields due to its dependency to B0. Moreover, image 
quality deteriorates because of poor magnetic field homoge-
neity, field instabilities during operation and delays in the 
field ramps between different phases in the pulse sequence 
especially for ultra-low evolution fields.

For all these reasons, both high- and low-field FFC scan-
ners may strongly benefit from SNR-enhancing methods and 
a vast number of these have been developed for high field 
MRI images in the recent years.24-29 These can be divided 
into denoising and reconstruction-based approaches. The for-
mer takes a series of noisy input images and tries to find a 
denoised solution by making use of a priori knowledge in 
the form of regularization. Regularization can use either 
spatial information, information from the acquired series, 
or a combination of both. Denoising approaches are gen-
erally simpler to implement and computation time is lower 
compared to reconstruction approaches, but they can not re-
cover structures that were missed by the k-space to image 
space transformation due to poor SNR. To this end, recent 
approaches rely on a constrained reconstruction process, in-
corporating the a priori knowledge in the image generation 
process.26-29 In the case of quantitative MRI, this approach 
can be taken one step further by including the non-linear MRI 
signal model into the reconstruction process, thus, directly 
acting on the parameter maps of interest.30-33 This kind of 
fitting approach is known as model-based reconstruction in 
the high field MRI regime. Most regularization strategies 
rely on some sort of sparsifying transform to separate image 
content from noise and artifacts. Commonly used transforms 
include finite differences based approaches27,34,35 and appli-
cations of the wavelet transformation.36-38 The regularization 
functional used highly influences the appearance of the final 
reconstruction and should be chosen based on a priori knowl-
edge about the given parameter map. It was shown that total 
generalized variation (TGV)35 priors are a superb choice for 
both image reconstruction27 and quantitative MRI,33 leading 
to high quality reconstruction results without the stair-casing 
artifacts of total variation (TV).27 Similar to TV, TGV uses 
information from the image gradient in combination with the 
assumption that images typically consist of a few, discrete 
edges and, thus, fits in the concept of compressed sensing.36 
Opposed to TV, patches between edges are not constrained 
to have a fixed value but can rather be linearly varying in the 
case of second order TGV (TGV2). To this end, stair-casing 
artifacts can be avoided using TGV.27 Higher order TGV 
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functionals allow for even higher degrees of freedom within 
the patches but are typically only needed in stereo imaging, 
such as red/green/blue (RGB).39

These constrained reconstruction and fitting methods 
apply well to the estimation of T1 maps. Standard T1 quan-
tification with inversion recovery sequences requires the ac-
quisition of an image series with different inversion times, 
leading to high redundancy in the information collected that 
can be exploited by the regularization algorithm. FFC im-
aging adds an extra dimension to MRI by varying the mag-
netic field during the relaxation phase of the pulse sequence, 
thus providing an additional field series. This multi-field data 
offers new possibilities to exploit information redundancies 
to improve the quantification process. These redundancies 
could be used by a model-based reconstruction approach, in-
corporating the data from all measurements at different field 
strengths into one large optimization problem. Each field 
leads to an individual T1 map that shares common informa-
tion with the other fields, for example, most edges in the T1 
map should coincide. This information can be exploited by 
joining the individual regularization functionals in paramet-
ric dimension via a Frobenius norm. The Frobenius norm is 
the matrix equivalent to the L2-norm for vectors and links 
edge information in parametric dimension. Such an approach 
was shown to further improve the quality of the resulting pa-
rameter maps in the context of T1 mapping from highly sub-
sampled data.33

Herein, we formulate the multi-field FFC imaging param-
eter quantification as a non-linear model-based reconstruc-
tion problem with Frobenius type TGV2 regularization. With 
this formulation as a single optimization problem it is possi-
ble to exploit all the joint spatial information of the additional 
field dimension to stabilize the quantification process and 
hence enhance the image quality. The proposed method is 
evaluated on simulated numerical FFC imaging data as well 
as on in vivo datasets from two stroke patients and compared 
to Tikhonov regularized fits from individual fields, all fields 
combined, and regularization using the squared L2-norm of 
the gradient (H1-regularization). The results show improved 
stability of the parameter quantification with excellent noise 
suppression properties. In particular, the proposed method re-
veals remarkable contrast between the lesion and surrounding 
tissues in case of ultra-low fields.

2  |   THEORY

2.1  |  Fixing notation

Throughout the course of this work we fix the following  
notations. The image dimensions in 2D are denoted as Nx  
and Ny, defining the image space U = ℂ

Nx ×Ny with  
p = (x, y) defining a point at location (x, y) ∈ ℕ

2. u ∈ UNu 

expresses the space of unknowns 
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t  the number of time points acquired at a specific 
evolution field B

Ei

0
. To simplify notation we will drop the 

indices and refer to �BE
0
 as �.

2.2  |  FFC imaging signal model

In the most general case of a FFC imaging pulse sequence, 
the main magnetic field is rapidly cycled between three dif-
ferent levels: polarization field BP

0
, evolution field BE

0
, and 

signal detection field BD
0
. A designated pre-polarization of the 

sample magnetization is not necessarily required in the high 
SNR regime and the polarization field can be set to the detec-
tion field, that is, BP

0
= BD

0
. For simplicity, we will assume 

that this is the case, and we will refer to these fields as B0 
and the corresponding equilibrium magnetization as M0, re-
spectively, as this does not alter the validity of our approach 
in the case of low-field systems since the effect of polariza-
tion at a different field can be compensated by a polariza-
tion efficiency term that blends into the inversion efficiency 
parameter. A schematic of a typical inversion recovery FFC 
imaging pulse sequence can be seen in Figure 1: following an 
inversion RF pulse, the main magnetic field is cycled to the 
desired strength BE

0
 and the spin system undergoes a relaxa-

tion associated with the applied evolution field during a given 
evolution time tevo. The longitudinal magnetization Mz at the 
end of this evolution period is given by

where M0 and ME
0
 are the equilibrium magnetizations for the 

detection and evolution field, respectively. The T1 relaxation 
time, corresponding to the evolution field applied, is given by 
TE

1
 and � corrects M0 for field-dependent effects from ramping 

the field combined with non-ideal inversion efficiency of the 
RF pulse.40 The equilibrium magnetization is proportional to 
the strength of the applied magnetic field, that is, M0 = CB0 and 
ME

0
= CBE

0
 for the detection and evolution field, respectively. 

This can also be written as

(1)Mz (t
evo) =

[
−�M0 − ME

0

]
e

− tevo

TE
1 + ME

0
,
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After the evolution period the signal is acquired at B0 to 
ensure that the Larmor frequency of the spins corresponds to 
the tuning frequency of the receive RF coil. With Equations 
(1) and (2), and the unknown parameters u =

(
C,�, TE

1

)
, the 

acquired signal S (u) can be modeled for a specific evolution 
field BE

0
 and evolution time tevo by the non-linear signal equa-

tion S: U → D, given by

with ℱ representing the Fourier transformation and sampling 
of k-space.

2.3  |  Multi-field parameter fitting

Acquiring several time points tevo for a specific evolution field 
BE

0
 allows to quantify C, �, and TE

1
. Typically, each BE

0
 field 

yields a different TE
1

 value; thus, the fitting process must be 
repeated for each evolution field, omitting joint information 

in the unknowns such as structural information. By combining 
the separate fitting steps into a single optimization problem 
it is possible to use the shared information to stabilize the 
quantification process. Furthermore, joint information 
between different parameter maps can be exploited by 
means of a Frobenius type functional. Such a fitting and 
regularization strategy has been successfully applied in other 
multi-channel fitting problems.33,41,42 Thus, we propose to 
apply a similar approach to quantify C, �, and TE

1
 from multi-

field FFC imaging data, using shared information, especially 
between the different TE

1
 maps.

2.4  |  Model-based reconstruction  
framework

Assuming Gaussian noise corrupts the measurement data d, it 
is possible to quantify the unknown parameter u via a regular-
ized non-linear, minimum-least-squares problem

which origins from a maximum a posteriori approach using 
Bayes' theory. A denotes some non-linear forward operator and 

(2)M0

B0

=
ME

0

BE
0

= C.

(3)S (u) =ℱ

{
C

[
−�B0e

− tevo

TE
1 + BE
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(
1 − e
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)]}
,

(4)min
u

1

2
‖A (u) − d‖2

2
+ �R (u) ,

F I G U R E  1   Pulse sequence diagram of an inversion recovery FFC imaging pulse sequence. A pre-polarization of the sample magnetization 
can be applied by cycling the main magnetic field to BP

0
 (dashed line) or by setting the polarization field to the detection field BD

0
, that is, BP

0
= BD

0
 

(solid line). After an inversion pulse at t0, the longitudinal magnetization Mz evolves at the desired evolution field BE

0
 for a given evolution time. The 

following magnetization Mz (t
evo) can be detected by any MRI acquisition module. Note that the MRI signal is both inverted and detected at BD

0
. M0 

and ME

0
 represent the equilibrium magnetization for BD

0
 and BE

0
, respectively
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R reflects a priori knowledge about the unknowns u by means of 
a regularization term. � can be used to weight between data and 
regularization term and may either be a scalar value or a vector 
for each unknown in u.

For multi-field FFC data, u is linked to the measurement 
data d =

(
d1,1, d1,2, . . . , d

1,N
E1
t

, d
2,N

E1
t

, . . . , d
NE ,N

ENE
t

)
∈ U via 

S: u ↦ di,n We denote all measured data as d and the corre-
sponding mapping from unknown space to data space as S. 
Thus, the optimization problem is defined as

R (u) is chosen as TGV2 regularization with a joint 
Frobenius norm on all unknowns u. ℰ denotes the finite 
symmetric derivative and the auxiliary variable v bal-
ances between the first and second derivative of the TGV2 
functional. This type of regularization was shown to have 
favorable properties for multi-parameter model-based re-
construction.33 The ‖⋅‖1,2,F terms resemble the Frobenius 
type TGV2 functionals, joining common spatial informa-
tion of the unknown parameter maps by combining gradi-
ent information of all maps via an L2-norm in parameter 
direction.

Using the TGV2 model parameters �0 and �1 it is pos-
sible to balance the approximated first and second de-
rivatives, avoiding the stair-casing artifacts of TV while 
maintaining its favorable edge-preserving features. The 
ratio �0∕�1 = 1∕2 of TGV2 is fixed throughout this work, 
as it was shown to yield good results for MRI image recon-
struction.27 The numerical solution is done in analogy to 
Ref. 33 via a Gauss-Newton (GN) approach. Leading to an 
inner GN problem of the form

The linearization is done via a Taylor series expansion 
of S w.r.t. each unknown in u at position uk. Constant terms 
are fused into d̃k to keep the notation clean. DS amounts to 
the Jacobian of S, evaluated at uk. Introducing an additional 
weighted L2-norm penalty on u improves convexity of the 
function. The weighting matrix Mk can be used to resemble 
a Levenberg-Marquardt update if Mk = diag

(
DS

T
DS

)
. The 

regularization parameters �k and �k balance between the three 
terms and are reduced after each linearization step. Reducing 
the weights was shown to be beneficial in the context of the 
IRGN algorithm.43

Using Fenchel duality the problem of non-differentiability 
can be overcome and Equation (6) can be cast into a saddle-
point form

K constitutes the linear operators encountered in 
Equation (6) within data and TGV2 norm, G reflects the 
quadratic penalty on u, and F ∗ denotes the dual norms of 
the data and TGV2 term. Problems in such a form can be 
solved via a primal-dual algorithm44 using a line-search 
to speed up convergence.45 Mathematical details for each 
step are given in Supporting Information Text A. The up-
date scheme written as pseudo code is given in Supporting 
Information Text B.

3  |   METHODS

3.1  |  Numerical FFC imaging data

To evaluate the proposed model-based reconstruction ap-
proach numerical FFC imaging data were simulated using 
parameters measured from FFC imaging scans of brain 
stroke patients at the University of Aberdeen as part of a 
separate study (PUFFINS study, see details in section 3.2). 
The numerical phantom followed a schematic geometry and 
dispersive characteristics of an axial head scan with four re-
gions (see Figure 3), representing the subcutaneous fat (re-
gion of interest [ROI] 1), the tissues surrounding the brain 
(ROI 2), the brain (ROI 3) and a stroke-like lesion (ROI 4). 
T1 values were simulated by means of a power-law disper-
sion with model parameters a and b, 1∕T1 = a(BE

0
)b, coarsely 

in line with proton T1-NMRD profiles of fat (ROI 1), white 
(ROI 2) and gray matter (ROI 3), and stroke lesions (ROI 4) 
measured in vivo from the PUFFINS patients cohort (data to 
be published). The values retained for the different evolution 
fields and times are summarized in Table 1 and Table 2, re-
spectively, and served as a ground truth for the validation of 
the T1 quantification. The numerical FFC imaging phantom 
was first generated as a vector graphic to be subsequently 
converted to matrix data to allow for any desired sampling 
resolution. In this case, we used an image resolution with ma-
trix size of 128 × 128 pixel, which is typical for the original 
FFC imaging of stroke patients. Tissue reference values were 
assigned for each ROI, and a data series was generated using 
the signal equation in Equation (3). Additionally, a small 
constant phase offset was introduced for each �.

Simulated proton density values were normalized to 1, re-
sulting in a theoretical maximum signal amplitude of 1 for 
the simulated series. Zero-mean Gaussian noise was added 
on both real and imaginary parts of the images to simulate 
the noise arising from the patient tissues and acquisition sys-
tem. The noise amplitude was selected as a percentage of the 
theoretical maximum signal in the overall ground truth image 
series ranging from 1% to 4%, reflecting a typical range from 
the FFC images acquired. SNR directly after inversion at B0 
ranged from 33.3 to 8.3 in the white matter ROI and 66.7 to 
16.7 for the gray matter ROI, respectively. Note that low-field 
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1

2
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+ �

�
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FFC images tend to exhibit markedly lower signal strength 
than higher-field ones because of losses when the magnetic 
field switches, so their SNR was proportionally more affected 
using this approach. Finally, the image series was trans-
formed to k-space via a 2D Fourier transformation, as input 
for the proposed method with TGV2 and H1 regularization, 
respectively. The pixel-wise fitting methods were applied to 
the image series.

3.2  |  In vivo FFC imaging data

The performance of the proposed method was tested on in 
vivo FFC imaging patient data. Two data sets obtained from 
patients scanned for a brain stroke were selected, as part of 
the PUFFINS study currently taking place at the University 
of Aberdeen. This study has been approved by the North 
of Scotland Research Ethics Committee (study number  
16/NS/0136), and all the participants agreed for the clinical 
and FFC imaging data to be used anonymously for research 
purposes. The scans selected both present a lesion in the ultra-
low field regime that could not be easily observed at 200 mT,  
as illustrated in Figure 2 for patient I. Both cases were 

assessed from computed tomography (CT) and diffusion-
weighted MRI scans as embolic stroke for patient I and 
multiple embolic events for patient II. FFC measurements 
were performed using a whole-body FFC scanner21 using a 
FFC inversion-recovery spin echo sequence46 with an echo 
time (TE) of 24 ms, 20 kHz bandwidth, 8.37 MHz acquisition 
frequency, 10 mm slide thickness, and single slice acquisition. 
The images had a field of view of 290 mm and a resolution of 
128 x 128 pixel in-plane with 80 phase encode acquisitions 
and partial Fourier acquisition (80 lines out of 128). The 
sample was pre-polarized at 200 mT for 300 ms before each 
evolution periods with the timings as shown in Table 1, for 
an acquisition time of 40 min.

3.3  |  Data processing and corrections

The original raw image was reconstructed using partial 
Fourier completion to recover the correct image ratio. Phase-
encode artifacts were removed using a method previously 
published,47 but the images had not been filtered or further 
modified. While the noisy images were used as input for the 
standard pixel-based fitting, the corresponding noisy k-space 

Parameter ROI 1 2 3 4

power law a 5.6 4.4 2.6 3.8

b −0.1 −0.15 −0.3 −0.08

T
1
(ms) at 200 mT 152 178.5 237.3 231.4

at 21 mT 121.3 127.3 120.7 193.2

at 2.2 mT 96.8 90.8 61.3 161.3

� abs (a.u.)/phase (rad) at 200 mT 1/0.5236

at 21 mT 0.75/0.6981

at 2.2 mT 0.6/0.8727

C(a.u.) at all fields 1 1/3 2/3 2.03/3

T A B L E  2   Parameter values selected to 
generate the simulated images

Application Variable
Field 
(mT) Evolution time (ms)

Simulation t
evo

1

n 200 455 242 129 68 36

t
evo

2

n 21.1 282 150 80 42 23

t
evo

3

n 2.2 136 73 39 21 11

Patient I t
evo

1

n 200 455 242 129 68 36

t
evo

2

n 21.1 282 150 80 42 23

t
evo

3

n 2.2 136 73 39 21 11

Patient II t
evo

1

n 200 455 196 84 36

t
evo

2

n 37 338 145 63 27

t
evo

3

n 6.9 196 84 36 16

t
evo

4

n 1.3 114 49 21 9

T A B L E  1   Evolution times and fields 
used to generate the simulated images 
and corresponding timings for the in vivo 
acquisitions
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data were used as input for the proposed fitting process using 
H1 and TGV2 regularization, respectively.

As reference method lsqnonlin of Matlab (The MathWorks, 
Inc.) was used for fitting Equation (4) field-by-field and 

pixel-by-pixel, where R (u) was replaced with Tikhonov reg-
ularization on the unknowns to stabilize fitting. Prior to fit-
ting, images were smoothed in k-space using the following 
filter function

F I G U R E  2   FFC images of a stroke patient from the PUFFINS study (patient I). Image obtained at 200 mT evolution field show good signal 
after inversion (B) and after 455 ms evolution time (A) but low contrast in the lesion, while low-field images at 21 mT (C) show good lesion 
contrast but most other tissue shows little to no signal

(A) (B) (C)

F I G U R E  3   Multi-field T1 maps obtained from simulated FFC imaging inversion recovery data. The reference T1 maps for three different 
evolution fields (200 mT, 21.1 mT, and 2.2 mT) are shown at the top. The different reconstruction methods are presented in each row. Standard refers 
to single field pixel-wise fitting, multi-field to combined field, pixel-wise fitting approach and H1 to the model-based approach with regularization 
using the squared L2-norm of the gradient. The proposed method is shown in the last row. The columns show increasing noise from left to right
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with kc = 30 denoting the cutoff radius, k the k-space location, 
and � = 100 as parameter for the slope of the filter.

As a second reference method, all fields were combined 
for the pixel-wise fitting without pre-smoothing, similar to 
the proposed method. As a third reference, an H1 regulariza-
tion was used as R (u), that is, penalizing the squared L2-norm 
of the gradient of u. The latter approach was implemented in 
Python and optimized using the proposed IRGN algorithm 
with an accelerated gradient descent optimizer for the inner 
iterations. Again, no pre-smoothing was applied.

The analyses with the proposed method were done by im-
plementing the FFC signal model in PyQMRI.48 All fittings 
were performed on a desktop PC equipped with an Intel(R) 
Core(TM) i7-6700K CPU @ 4.00GHz with 64 gigabyte of 
RAM and a NVIDIA GeForce GTX 1080 Ti GPU with 12 
gigabyte of RAM.

3.4  |  Optimization

The regularization weights �k and �k were reduced after each 
linearization step, following the iterative regularized Gauss-
Newton scheme.49

�k = 10−3 and �k = 1 were used as initial 
values and were reduced by a factor of 0.5 and 0.1, respectively. 
To account for the typical smooth appearance of �,  
corresponding regularization weights were multiplied by 
a factor of 10. The reduction steps were repeated down to 
�min = 4 × 10−6 and �min = 10−3. In total, 12 linearization 
steps were performed. The number of primal-dual iterations 
for each sub-problem was doubled starting at 10 iterations up 
to 2000 iterations, that is, iterk = min

(
10 ∗ 2k, 2000

)
. If the 

relative decrease in the primal problem or the decrease of the 
primal-dual gap was less than 10−6, the inner iteration was 
terminated. The step sizes of the primal-dual algorithm used 
were determined via a line-search, described in Algorithm 
2.45 The same approach and the same weights have been used 
for the H1-regularized reference method. Weights for the 
Tikhonov based approaches have been selected as small as 
possible to still achieve a stable fitting (2 ⋅ 10−11).

4  |   RESULTS

4.1  |  Numerical FFC imaging data

The simulated high noise level can be seen as residual noise in 
the reconstructed T1 maps of the pixel-wise fitting approaches 
(Figure 3). Simultaneously, a difference to the simulated 
reference is visually noticeable in the pixel-wise fitting 

approach. The H1 approach is able to reduce these outliers 
but suffers from blurring at image edges. The proposed 
model-based method is able to reduce outliers throughout all 
noise levels and is visually closer to the simulated reference 
values. Plots of C and � in Supporting Information Figure 
S3-2 show similar results. The single-field pixel-wise fitting 
approach even fails to capture the correct phase of the 
simulated phantom. A pixel-wise relative absolute difference 
plot (Figure 4) confirms this visual impression of reduced 
noise using the proposed approach. The proposed method 
shows an up to 18-fold lower mean error in the phantom, 
computed over all pixels, than standard pixel-wise fitting. The 
error increases with increased noise level, as can be expected. 
Difference plots also reveal a slight bias of the proposed 
method. The bias of the methods is further assessed in 2D 
joint histogram plots (Figure 5). For these plots, T1 values of 
all fields are combined to form a single plot. The proposed 
method shows slight underestimation of high T1 values, as 
reflected by points lying below the identity line. However, 
noise could be greatly reduced compared to the pixel-wise 
fitting, and different T1 ranges are clearly separated and show 
a similar distribution as the simulated values. Fitting with the 
standard method took approximately 100 s. The proposed 
method took roughly 120 seconds.

4.2  |  In vivo FFC imaging data

The improvements in T1 estimations held true when process-
ing real FFC imaging data from stroke patients. The T1 maps 
of unfiltered FFC images obtained using standard fitting-
based processing methods could not resolve anatomical 
features inside the brain region, as seen in Figures 6 and 7. 
Spatial regularization in combination with multi-field fitting 
could greatly improve image contrast. The proposed method 
offers clear distinguishable structures in T1 maps at 200 mT 
and is even able to recover some structural details in lower 
fields. It also assessed sharp features around the lesion area 
appearing at 37 mT and below in both patients. Fitting took 
approximately 65 and 150 s with the standard method for pa-
tient I and II, respectively, whereas the proposed method took 
100 and 240 s for each patient, respectively.

The quality of the T1 maps obtained allowed estimating 
the T1 dispersion curves for different ROIs, as shown on 
Figure 8 for subcutaneous fat selected under the scalp, the 
area of the lesion observed at the lowest field strength, and 
white and gray matter as seen at the highest field strength 
(the ROIs are shown in Supporting Information Figure S4). 
The dispersion profiles of fatty tissues show large SDs, which 
may be attributed to the presence of various types of tissues 
within these ROIs, due to the relatively low resolution of the 
image. Otherwise, the T1 dispersion profiles of white matter, 
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2
+

1

�
arctan �

kc − |k|
kc

,



      |  2057BÖDENLER et al.

gray matter, and the areas of the lesions are similar between 
the two patients. This is encouraging given that the two lesion 
have a similar diagnosis of ischemic stroke.

5  |   DISCUSSION

The approach used here has high potential to serve as a new 
standard procedure for fast post-processing of FFC MRI 
data. As the phantom simulations showed, the noise in the 
reconstructed T1 maps could be reduced very efficiently while 
preserving important anatomical details to a high extent. 
The algorithm outperforms established methods based on 
pixel-wise fitting of the relaxation profiles yielding lower 
deviations from the reference values and significantly less 
variance (Figures 3-5). The improved stability results from 
the combination of information from all acquired fields and 
exploiting the existence of similar topological structures in the 
different unknowns. The improved stability is also reflected 
by increased accuracy of recovered pseudo proton density 
C and correction factor � values (Supporting Information 
Figures S1-S3). Higher deviations of larger T1 values in the 
reference methods are due to the Tikhonov regularization 
used,which penalizes the larger T1 values than lower. Also 

the T1 maps show significantly reduced variance, although 
there remains some bias that may be, at least partially, due 
to residual errors in �. Another remarkable feature of the 
multi-field methods is their ability to accurately recover the 
phase information in C and �, making phase correction prior 
to fitting obsolete. This in turn can improve T1 maps, as no 
normalization with a noise phase estimate is necessary.

The advantages of the improved fitting approach become 
immanent in the in vivo applications (Figures 6 and 7). The 
standard approaches based on pixel-wise fitting fail to re-
construct image details in both patients. In current practice, 
k-space windowing filters are applied to recover usable in-
formation, but this dramatically reduces image resolution by 
filtering out the high-frequency components of the image, 
which are responsible for the sharp features. In contrast, 
the joint regularization approach can recover clearly distin-
guishable gray and white matter regions at 200 mT on the 
two patient datasets, previously hidden in noise. The values 
obtained for the different regions of interest agree well be-
tween the patients, given the estimation of the error provided 
by the variation of the T1 values within each ROI (Figure 8). 
The T1 values were systematically higher in patient I than 
in patient II, which may be attributed to patient variability 
and different RF receive coil sensitivity relative to the used 

F I G U R E  4   Pixel-wise relative absolute difference to the ground truth T1 values. Numbers next to the difference images show mean relative 
absolute error within the phantom. All values are given in percent
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ROIs. In addition, lesion localization agrees well with con-
ventional MRI and CT based imaging, shown in Supporting 
Information Figure S5.

As expected from the raw images, the largest T1 contrast 
for stroke appeared below 0.1T, where T1 values were larger 
than that of the surrounding tissues. A cutoff appears between 

30 and 100 mT (or equivalently 1.2 to 4.2 MHz) above which 
the contrast disappears. This is consistent with the fact that 
higher clinical fields do not show significant T1 changes in 
acute ischemic stroke. Clearer interpretations may be pro-
vided from the analysis of the full data set but a tentative ex-
planations of this phenomenon could be made by taking into 

F I G U R E  5   2D histogram evaluation 
for T1 maps in Figure 3, which were obtained 
from synthetic FFC imaging data by pixel-
wise fitting (standard), combined field 
pixel-wise fitting (multi-field), multi-field 
H1, and joint model-based reconstruction 
(proposed). The dashed line represents 
identity. Shown are reference values on 
the ordinate versus results obtained with 
the different reconstruction methods on 
the abscissa. Points below the identity line 
correspond to under-estimation, points 
above to over-estimation, respectively. All 
values are given in ms
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account the biological effects of ischemia. During acute isch-
emia neuron cells swell and burst, and this process is likely 
to disorganise large structures that interact with water over 
timescales that correspond to the cutoff frequency observed, 
that is, between 0.2 and 0.7 �s. The degradation of these 
components of the brain structure could have the effect to 
reduce the efficiency of the relaxation pathways at low mag-
netic fields, as observed here. Another possibility could be 
that the reduction of water mobility through the membranes 
of neurons may decrease the contribution of the intracellular 
water relaxation to the overall signal, which may dominate 
at low field but could be less efficient at higher fields. These 
explanation would be consistent with the absence of T1 con-
trast at higher fields.

As in the phantom images the model-based and spatially 
regularized methods proved to preserve anatomical features 
with high spatial frequencies because of using the existence 
of sharp edges for regularization. These approaches are in-
creasingly accurate with the number of views that can be 
compared showing the same object, either as a repetition of a 
recording or as different acquisition of the same field of view, 
as it is the case here. Hence, FFC imaging can benefit from 
the high information redundancy obtained from the typical 
acquisition method, which repeats the measurement of the 
field of view at different evolution times and fields.

As the proposed approach is model-based, and can there-
fore provide T1 directly from the raw images, it could be used 
to reduce the number of steps required to process the image 

F I G U R E  6   In vivo multi-field T1 maps 
of a transverse slice of the brain of stroke 
patient I. From top to bottom, T1 maps 
were obtained at three different evolution 
fields BE

0
= {200, 21.1, 2.2} mT by pixel-

wise fitting of the signal model for each BE

0
 

separately, combined field pixel-wise fitting, 
multi-field model-based reconstruction 
with H1 regularization and by the proposed 
multi-field model-based reconstruction 
approach using the joint information of all 
three evolution fields (bottom row)
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and limits data losses. However model-based approaches 
also limit the amount of information that is extracted from 
the image, and properties not covered by the signal equation, 
may be missed. For instance, brain tissues are known to fol-
low bi-exponential relaxation because of the presence of the 
myelin sheath around the axons. Hence in a subsequent step, 
the model will be adapted to the type of scan, or following a 
test for potential multi-exponential behavior.50

Using direct reconstruction from k-space opens up the pos-
sibility of undersampled image acquisition while maintaining 
high quality in the reconstructed T1 maps.33 The proposed 
method allows for different kinds of undersampling and is 
not limited to Cartesian sampling or single slice acquisitions. 
While a single receive coil hast been used for the current study, 

the extension to a multi-coil setup is straight forward.33 The 
combination of multiple receive coils and the potential of un-
dersampling k-space could be used to reduce acquisition time 
in FFC imaging which shall be subject of a future study. The 
gained acquisition time might lead to a clinical acceptable scan 
time using the three or four fields shown in this work or could 
be spent to investigate a multitude of different field strength. 
However, such extensions would require modifications to the 
phase correction algorithm, which is based on images.

Another advantage of direct reconstruction from k-space 
data is the validity of the Gaussian noise assumption in the 
real and complex parts of k-space. In the typically used mag-
nitude images, noise is non-linearly transformed, resulting in 
a Rician or non-central Chi distribution.51 This invalidates 

F I G U R E  7   In vivo multi-field T1 maps of a transverse slice of the brain of stroke patient II. T1 maps were obtained at four different evolution 
fields BE

0
= {200, 37, 6.9, 1.3} mT. The different reconstruction methods are given in each row. From top to bottom the methods are pixel-wise fitting 

of the signal model for each BE

0
 separately, combined field pixel-wise fitting, multi-field model-based reconstruction with H1 regularization and by 

the proposed multi-field model-based reconstruction approach using the joint information of all three evolution fields
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the basic assumptions used to derive the L2-norm data fidel-
ity term and can lead to a bias in the final solution. Even 
though the data term can be modified to account for these 
variations, the modified version need not be convex or dif-
ferentiable. Thus, optimization of the correct function might 
lead to suboptimal solutions or demanding optimization al-
gorithms. In practice, the favorable properties of the L2-norm 
usually outweigh the drawback of the bias to the theoretically 
optimal solution; thus, it is widely used.

A potential limitation of the proposed approach is the 
risk of cross-contamination of the information between im-
ages due to the joint regularization.33,42,52 It is assumed that 
features share the same edge position. If this assumption is 
violated in one parameter map, artificial edges might be intro-
duced. The likelihood strongly depends on the used norm for 
joining the information. As we use a relative weak coupling 
by means of a Frobenius norm, such cross-contamination is 
unlikely. It was shown in previous work that Frobenius norm 
based joint regularization does not show cross-contamination 
in practice.33,42,52 It might only occur if way too strong reg-
ularization weights are used; however, such cases would be 
discarded in practice as images would look unnatural.42

The proposed reconstruction and fitting approach is inte-
grated into a recently published Python framework for quan-
titative MRI.48 This framework allows for an easy adaption 
to different signal models and, thus, a broad application of 
the proposed method. Adaptions to the signal model can be 
made by simply editing text files. In addition, 3D regular-
ization strategies are possible, which were shown to further 
improve reconstruction quality.33,52

6  |   CONCLUSIONS

We have successfully introduced joint TGV2 regulariza-
tion to multi-field T1 quantification from FFC imaging. The 
highly significant improvements in T1 estimation makes 

it now possible to obtain clinically usable multi-field T1 
maps, and to produce reliable and comparable results. This 
shows exciting potential for the exploration of low mag-
netic fields and T1 dispersion effects as illustrated here on 
two stroke patients.
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FIGURE S1 Absolute value of multi-field � maps obtained 
from simulated FFC imaging inversion recovery data. The 
reference � maps for three different evolution fields (200 mT, 
21.1 mT and 2.2 mT) are shown at the top. The different re-
construction methods are presented in each row. Standard re-
fers to single field pixel-wise fitting, multi-field to combined 
field, pixel-wise fitting approach and H1 to the model-based 
approach with regularization using the squared L

2-norm of 
the gradient. The proposed method is shown in the last row. 
The columns show increasing noise from left to right. Values 
next to each figure represent the mean value within the sim-
ulated phantom in a.u.
FIGURE S2 Phase of multi-field � maps obtained from 
simulated FFC imaging inversion recovery data. The ref-
erence phase maps for three different evolution fields (200 
mT, 21.1 mT and 2.2 mT) are shown at the top. 0The 

different reconstruction methods are presented in each row. 
Standard refers to single field pixel-wise fitting, multi-field 
to combined field, pixel-wise fitting approach and H1 to the 
model-based approach with regularization using the squared  
L

2-norm of the gradient. The proposed method is shown in 
the last row. The columns show increasing noise from left 
to right. Values next to each figure represent the mean value 
within the simulated phantom in radiant
FIGURE S3 Absolute value and phase of C maps obtained 
from simulated FFC imaging inversion recovery data. The 
reference C map is shown at the top. In the left column, 
the multi-field C. maps were obtained by pixel-wise fitting 
of each evolution field separately (standard), and the right 
column results from joint model-based reconstruction of all 
three evolution fields together (proposed). The noise level in-
creases from top to bottom from 1% to 4%
FIGURE S4 Regions of interest selected to extract the dis-
persion profiles in Figure 8 in patients I (left) and II (right). 
The regions for white matter are delineated in light blue 
dashed lines, grey matter in solid dark blue lines, fat in yellow 
dotted lines and lesions in red dot-dashed lines
FIGURE S5 Images obtained from clinical examinations of 
Patient I (images on the left) and II (images on the right) from 
CT (top) and conventional MRI using 3D T

2
-FLAIR (centre) 

and DWI (bottom), showing only the slice that corresponds 
with the single slice acquisition of the FFC acquisition. The  
T

2
-FLAIR (T

2
-weighted-Fluid-Attenuated Inversion Recovery) 

sequence had an isotropic resolution of 0.625 mm, a SPIR fat 
suppression, an inversion delay of 1650 ms, an echo time of 
340 ms and a repetition time of 4800 ms. The DWI (Diffusion-
Weighted Imaging) had an in-plane resolution of 0.8 mm, a 
slice thickness of 4 mm, a STIR fat suppression, an echo time 
of 77 ms, a repetition time of 3478 ms and a b-factor of 1000. 
The results indicate ischemic strokes and are clearly visible in 
both MRI FLAIR and DWI images, with patient II exhibiting 
multiple small strokes. CT scans are less informative for isch-
emic stroke, as illustrated here on patient II
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