182 research outputs found

    Down-regulation of Survivin enhances sensitivity to BPR0L075 in human cancer cells via caspase-independent mechanisms

    Get PDF
    Background: BPR0L075 [6-methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole] is a novel anti-cancer compound. It inhibits tubulin polymerization and induces mitochondrial-dependent apoptosis in various human cancer cells with different multi-drug resistance (MDR) status. Over-expression of an anti-apoptotic molecule, survivin, causes drug-resistance in various cancers. Survivin inhibits apoptosis by interfering caspase-3 and promotes cell growth by stabilizing microtubule networks. Here, we determined the effects of down-regulation of survivin in BPR0L075 (L075) treatment. Methods: Western blot analysis was used to determine the expression level of survivin in L075-untreated/-treated human oral carcinoma KB and nasopharyngeal carcinoma HONE-1 cancer cells. siRNA was used to down-regulate endogenous survivin. MTT cell viability assay, real-time caspase-3 activity assay and immuno-fluorescence microscopy were used to analyze downstream effects. Results: Survivin expression was up-regulated in both KB and HONE-1 cells in response to L075 treatment. Down-regulation of survivin induced hyper-sensitivity to L075 in KB and re-stored sensitivity to L075 in KB-derived L075-resistant KB-L30 cancer cells. At the molecular level, down-regulation of survivin induced changes in microtubule dynamics in both KB and KB-L30 cells. Surprisingly, down-regulation of survivin did not enhance the activity of caspase-3 in L075 therapy. Instead, down-regulation of survivin induced translocation of the apoptosis-inducing factor (AIF) from cytoplasm to nucleus. Conclusion: Down-regulation of survivin improved drug sensitivity to L075 in both KB and L075-resistant KB-L30 cancer cells, possibly through a tubulin-dependent and caspase-independent mechanism. We suggest that combining BPR0L075 and survivin inhibitor may give better clinical outcome than the use of BPR0L075 monotherapy in future clinical trials

    Development of Band Reject Filter to Mitigate the effect of WLAN in UWB Receivers

    Get PDF
    This paper is about a dual band single notch filter to eliminate the effect of WLAN in UWB range. A novel square resonator with interdigital coupling at both sides plays a key role in this filter design. Design and EM Simulation of the dual band notch filter's characteristics are discussed in this paper. The proposed dual band notch filter produces excellent bandwidth from 2 GHz to 5 GHz and from 5.5 GHz to 8 GHz. The filter rejects the band of frequency from 5 GHz to 5.5 GHz which is very narrow band in which the filter eliminates the effect of WLAN (IEEE 802.11a). Also the out band performance of the proposed dual band filter meets the requirement of FCC's mask. The simulation analysis of the proposed filter is performed by electromagnetic solver. The return loss, insertion loss, group delay and phase of the filter are simulated and their performances are analyzed. The overall dimension of the filter is achieved to be 39mm x 3.2mm x 1.6mm on accounting the above features. The fractional bandwidth of the notch filter is calculated from the bandwidth and the center frequency and it is obtained about 115%. The S parameter results of the filter such as return loss (S11) in stop band is about -24 dB and insertion loss (S21) is about -28 dB is obtained

    Survivin counteracts the therapeutic effect of microtubule de-stabilizers by stabilizing tubulin polymers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Survivin is a dual function protein. It inhibits the apoptosis of cells by inhibiting caspases, and also promotes cell growth by stabilizing microtubules during mitosis. Over-expression of survivin has been demonstrated to induce drug-resistance to various chemo-therapeutic agents such as cisplatin (DNA damaging agent) and paclitaxel (microtubule stabilizer) in cancers. However, survivin-induced resistance to microtubule de-stabilizers such as <it>Vinca </it>alkaloids and Combretastatin A-4 (CA-4)-related compounds were seldom demonstrated in the past. Furthermore, the question remains as to whether survivin plays a dominant role in processing cytokinesis or inhibiting caspases activity in cells treated with anti-mitotic compounds. The purpose of this study is to evaluate the effect of survivin on the resistance and susceptibility of human cancer cells to microtubule de-stabilizer-induced cell death.</p> <p>Results</p> <p>BPR0L075 is a CA-4 analog that induces microtubule de-polymerization and subsequent caspase-dependent apoptosis. To study the relationship between the expression of survivin and the resistance to microtubule de-stabilizers, a KB-derived BPR0L075-resistant cancer cell line, KB-<it>L30</it>, was generated for this study. Here, we found that survivin was over-expressed in the KB-<it>L30 </it>cells. Down-regulation of survivin by siRNA induced hyper-sensitivity to BPR0L075 in KB cells and partially re-stored sensitivity to BPR0L075 in KB-<it>L30 </it>cells. Western blot analysis revealed that down-regulation of survivin induced microtubule de-stabilization in both KB and KB-<it>L30 </it>cells. However, the same treatment did not enhance the down-stream caspase-3/-7 activities in BPR0L075-treated KB cells. Translocation of a caspase-independent apoptosis-related molecule, apoptosis-inducing factor (AIF), from cytoplasm to the nucleus was observed in survivin-targeted KB cells under BPR0L075 treatment.</p> <p>Conclusion</p> <p>In this study, survivin plays an important role in the stability of microtubules, but not with caspases inhibition. Over-expression of survivin counteracts the therapeutic effect of microtubule de-stabilizer BPR0L075 probably by stabilizing tubulin polymers, instead of the inhibition of caspase activity in cancer cells. Besides microtubule-related caspase-dependent cell death, caspase-independent mitotic cell death could be initiated in survivin/BPR0L075 combination treatments. We suggest that combining microtubule de-stabilizers with a survivin inhibitor may attribute to a better clinical outcome than the use of anti-mitotic monotherapy in clinical situations.</p

    BPR1K653, a Novel Aurora Kinase Inhibitor, Exhibits Potent Anti-Proliferative Activity in MDR1 (P-gp170)-Mediated Multidrug-Resistant Cancer Cells

    Get PDF
    Over-expression of Aurora kinases promotes the tumorigenesis of cells. The aim of this study was to determine the preclinical profile of a novel pan-Aurora kinase inhibitor, BPR1K653, as a candidate for anti-cancer therapy. Since expression of the drug efflux pump, MDR1, reduces the effectiveness of various chemotherapeutic compounds in human cancers, this study also aimed to determine whether the potency of BPR1K653 could be affected by the expression of MDR1 in cancer cells.BPR1K653 specifically inhibited the activity of Aurora-A and Aurora-B kinase at low nano-molar concentrations in vitro. Anti-proliferative activity of BPR1K653 was evaluated in various human cancer cell lines. Results of the clonogenic assay showed that BPR1K653 was potent in targeting a variety of cancer cell lines regardless of the tissue origin, p53 status, or expression of MDR1. At the cellular level, BPR1K653 induced endo-replication and subsequent apoptosis in both MDR1-negative and MDR1-positive cancer cells. Importantly, it showed potent activity against the growth of xenograft tumors of the human cervical carcinoma KB and KB-derived MDR1-positive KB-VIN10 cells in nude mice. Finally, BPR1K653 also exhibited favorable pharmacokinetic properties in rats.BPR1K653 is a novel potent anti-cancer compound, and its potency is not affected by the expression of the multiple drug resistant protein, MDR1, in cancer cells. Therefore, BPR1K653 is a promising anti-cancer compound that has potential for the management of various malignancies, particularly for patients with MDR1-related drug resistance after prolonged chemotherapeutic treatments

    A two-step resin based approach to reveal survivin-selective fluorescent probes

    Get PDF
    The identification of modulators for proteins without assayable biochemical activity remains a challenge in chemical biology. The presented approach adapts a high-throughput fluorescence binding assay and functional chromatography, two protein-resin technologies, enabling the discovery and isolation of fluorescent natural product probes that target proteins independently of biochemical function. The resulting probes also suggest targetable pockets for lead discovery. Using human survivin as a model, we demonstrate this method with the discovery of members of the prodiginine family as fluorescent probes to the cancer target survivin. This journal is © The Royal Society of Chemistry.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Relationship between dichromate oxidizable and total soil organic carbon and distribution of different pools of organic carbon in Vertisols of Central India

    Get PDF
    Geo-referenced soil samples (0-15 cm) were collected from the farmers fields of Sehore (n = 120) and Vidisha (n = 156) district representing AESR 10.1 to establish the relationship between oxidizable SOC and total SOC in Vertisols of Central India and also to study the distribution of different pools of SOC as well as their relationship with crop yield. Total SOC was apportioned into different pools by using 5, 10 and 20 ml of concentrated H2SO4 that resulted in 3 acid-aqueous solution ratio of 0.5:1, 1:1 and 2:1. Also crop yields during the following winter season and rainy season from the geo-reference fields were recorded and were transformed to % relative yield. Oxidizable SOC (y) was related to total SOC (x) in the form of y = 0.825x – 0.086 (R2 = 0.958, n = 276), indicating that oxidizable SOC comprised 82.5% of the total SOC. Therefore it was recommended that a correction factor of 1.21 should be used to convert oxidizable SOC values to get the estimate of total SOC. The mean crop productivity was better related to oxidizable SOC (r = 0.5275) as compared to total SOC(r = 0.4886). The threshold and optimum values of oxidizable SOC were 3.2 and 11.2 g C/kg, respectively, whereas the threshold and optimum values for total SOC were 3.87 and 14.1 g C/kg, respectively. Among the different pools, less labile C was highly correlated (r = 0.5871) with the crop productivity, the computed threshold and optimum value for less labile C were 1.53 and 5.2 g C/kg, respectively

    Biochars effects potentially toxic elements and antioxidant enzymes in Lactuca sativa L. grown in multi-metals contaminated soil

    Get PDF
    Geogenic and anthropogenic activities can leads to agriculture soil pollution and land degradation. Many cost-effective and environment friendly strategies are applied to improve soil fertility, reduce soil pollution and human health risks caused by consumption of metals contaminated vegetables. In this study we evaluate the effects of rice husk biochar (RHB), biochar from corn cob (CCB) and biochar from peanut shells (PNB) on the bioavailability of potentially toxic elements (PTEs) in soil, its bioaccumulation and antioxidant enzymes activities in Lactuca sativa L. plants. RHB, CCB and PNB amendments significantly (P≤0.05) increased Lactuca sativa L. biomass production (39%, 65% and 100%) as well as soil fertility. Amendments of PNB, RHB and CCB significantly (P≤0.05) increased soil available phosphorous (P), cation exchange capacity (CEC), pH, total nitrogen (TN), total carbon (TC) and dissolved organic carbon (DOC) concentration, but markedly reduced bioavailable concentrations of cadmium (Cd) (31%, 20% and 22%) arsenic (As) (33%, 22% and 27%), and lead (Pb) (46%, 24% and 32%). In addition, CCB and PNB amendments significantly (P≤0.01) decreased the shoot accumulation of Pb, Cd and As, while RHB amendment increased the shoot accumulations of nickel (Ni) and chromium (Cr). The reduction in PTEs accumulation may be linked with increased sorption of PTEs by biochars. Furthermore, amendments of CCB and PNB significantly (P≤0.05) suppressed the activities of SOD (53% and 69%), POD (22%, 31%) but stimulated (38% and 31%) with amendment of RHB. However, RHB, CCB and PNB amendments significantly (P≤0.05) suppressed the activity of CAT (21%, 41% and 48%) in Lactuca sativa L. plants. PNB was the most effective soil amendment as compared with RHB and CCB. However, to fully elucidate the effects of the tested biochars, long-term field trails are needed

    Identification of Potent EGFR Inhibitors from TCM Database@Taiwan

    Get PDF
    Overexpression of epidermal growth factor receptor (EGFR) has been associated with cancer. Targeted inhibition of the EGFR pathway has been shown to limit proliferation of cancerous cells. Hence, we employed Traditional Chinese Medicine Database (TCM Database@Taiwan) (http://tcm.cmu.edu.tw) to identify potential EGFR inhibitor. Multiple Linear Regression (MLR), Support Vector Machine (SVM), Comparative Molecular Field Analysis (CoMFA), and Comparative Molecular Similarities Indices Analysis (CoMSIA) models were generated using a training set of EGFR ligands of known inhibitory activities. The top four TCM candidates based on DockScore were 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid, and all had higher binding affinities than the control Iressa®. The TCM candidates had interactions with Asp855, Lys716, and Lys728, all which are residues of the protein kinase binding site. Validated MLR (r² = 0.7858) and SVM (r² = 0.8754) models predicted good bioactivity for the TCM candidates. In addition, the TCM candidates contoured well to the 3D-Quantitative Structure-Activity Relationship (3D-QSAR) map derived from the CoMFA (q² = 0.721, r² = 0.986) and CoMSIA (q² = 0.662, r² = 0.988) models. The steric field, hydrophobic field, and H-bond of the 3D-QSAR map were well matched by each TCM candidate. Molecular docking indicated that all TCM candidates formed H-bonds within the EGFR protein kinase domain. Based on the different structures, H-bonds were formed at either Asp855 or Lys716/Lys728. The compounds remained stable throughout molecular dynamics (MD) simulation. Based on the results of this study, 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid are suggested to be potential EGFR inhibitors.National Science Council of Taiwan (NSC 99-2221-E-039-013-)Committee on Chinese Medicine and Pharmacy (CCMP100-RD-030)China Medical University (CMU98-TCM)China Medical University (CMU99-TCM)China Medical University (CMU99-S-02)China Medical University (CMU99-ASIA-25)China Medical University (CMU99-ASIA-26)China Medical University (CMU99-ASIA-27)China Medical University (CMU99-ASIA-28)Asia UniversityTaiwan Department of Health. Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004)Taiwan Department of Health. Cancer Research Center of Excellence (DOH100-TD-C-111-005

    Study of physical mechanisms induced by a plasma actuator for super/hypersonic rarefied flows applied to atmospheric entries

    No full text
    Ces dernières années, les missions spatiales bénéficient d'un regain d'intérêt. Cependant, lorsqu’arrive laphase d’entrée dans l’atmosphère, nous faisons encore face à d’importantes difficultés. Afin de répondre àce problème, une nouvelle technique est proposée : le contrôle par plasma pour augmenter la force detraînée sur le véhicule et ainsi, décroître sa vitesse. Dans cette thèse, un actionneur plasma est testé danstrois écoulements supersoniques (N1(M2-8Pa), N2(M4-8Pa) and N3(M4-71Pa)) et un hypersonique (M20-0.062Pa), ces écoulements étant simulés par la soufflerie MARHy.L’actionneur plasma induit des modifications de l’écoulement autour du modèle étudié, comme unemodification de la géométrie de l’onde de choc et une augmentation de l’angle de choc. Afin de mieuxcomprendre les phénomènes gouvernant ces modifications, la pression Pitot, la température surfacique etvolumique, les données électroniques et des mesures spectroscopiques ont été analysées. Les résultatsmontrèrent que deux types d’effets interviennent : thermiques (surface et volume) et l’ionisation. De plus, il aété démontré que ces effets n’ont pas la même importance suivant les conditions d’écoulements.L’actionneur plasma lui-même a été modifié dans un but d’amélioration. En particulier, deux types degénérateurs ont été étudiés pour alimenter la cathode : DC et pulsé. Finalement, il est montré que pour unepuissance de décharge de 80 W, une augmentation de 13% de la traînée et donc, une diminution de plus de25% des flux de chaleur peuvent être attendus. Par conséquent, les actionneurs plasma semblent être descandidats idéaux pour les missions spatiales et les (r)entrées atmosphérique.Space missions are arousing renewed interest in these recent years. However, when coming to the entryinto the atmosphere, major issues are still to be considered. To answer this problem, a new Entry DescentLanding technique is proposed: plasma actuation to increase the drag force over the vehicle body and thus,decrease its speed. In this thesis, a plasma actuator is tested in three supersonic rarefied flows (N1(M2-8Pa), N2(M4-8Pa) and N3(M4-71Pa)) and a hypersonic one (M20-0.062Pa), all generated by the wind tunnelMARHy.The plasma actuator induces flow modifications over the studied model, such as a change in the shock waveshape and an increase in the shock wave angle. In order to better understand the phenomena governingthese modifications, Pitot pressure, surface and gas temperature, electron data and spectroscopicmeasurements were analyzed. The results shown that two types of effects are involved: thermal (bulk andsurface) and ionization. Moreover, it was demonstrated that these effects had not the same importancedepending on the flow conditions.The plasma actuator was also modified in order to improve it. In particular, two types of generators wereused to biase the cathode: DC and pulsed. Finally, it was shown that, for a discharge power of 80 W, a 13%increase in the drag force could be expected and thus, a decrease in the heat load over the model body ofmore than 25%. Therefore, plasma actuators seem to be promising applications for space missions andatmospheric entries
    corecore