25 research outputs found

    Equivalence of foliar water uptake and stomatal conductance?

    Get PDF
    Foliar water uptake, FWU, the uptake of atmospheric water directly into leaves, has been reported to occur in nearly 200 species spanning a wide range of ecosystems distributed globally. In order to represent FWU in land‐surface models, a conductance term is required to scale the process to the canopy level. Here we show that conductance to FWU is theoretically equivalent to stomatal conductance and that under commonly occurring conditions vapour could diffuse into leaves at rates equivalent to those reported as FWU. We therefore conclude that such 'reverse transpiration' could partially, or even wholly, account for FWU in some plants.Australian Research Council, Grant/Award Number: FT11010045

    Serine protease inhibitors serpina1 and serpina3 are down-regulated in bone marrow during hematopoietic progenitor mobilization

    Get PDF
    Mobilization of hematopoietic progenitor cells into the blood involves a massive release of neutrophil serine proteases in the bone marrow. We hypothesize that the activity of these neutrophil serine proteases is regulated by the expression of naturally occurring inhibitors (serpina1 and serpina3) produced locally within the bone marrow. We found that serpina1 and serpina3 were transcribed in the bone marrow by many different hematopoietic cell populations and that a strong reduction in expression occurred both at the protein and mRNA levels during mobilization induced by granulocyte colony-stimulating factor or chemotherapy. This decreased expression was restricted to the bone marrow as serpina1 expression was maintained in the liver, leading to no change in plasma concentrations during mobilization. The down-regulation of serpina1 and serpina3 during mobilization may contribute to a shift in the balance between serine proteases and their inhibitors, and an accumulation of active neutrophil serine proteases in bone marrow extravascular fluids that cleave and inactivate molecules essential to the retention of hematopoietic progenitor cells within the bone marrow. These data suggest an unexpected role for serpina1 and serpina3 in regulating the bone marrow hematopoietic microenvironment as well as influencing the migratory behavior of hematopoietic precursors

    Measuring the vertical profile of leaf wetness in a forest canopy

    Get PDF
    Plant canopies are wet for substantial amounts of time and this influences physiological performance and fluxes of energy, carbon and water at the ecosystem level. Leaf wetness sensors enable us to quantify the duration of leaf wetness and spatially map this to canopy structure. However, manually analysing leaf wetness data from plot-level experiments can be time-consuming, and requires a degree of subjective judgement in delineating wetness events which can lead to inconsistencies in the analysis. Here we: • Describe how to set up an array of leaf wetness sensors (Phytos 31, Meter) enabling the measurement of leaf wetness duration through the profile of a forest canopy, • Present a method and R script to objectively identify and distinguish periods of rain and dew from the output of leaf wetness sensors, • Provide a criteria for separating the leaf wetness sensor output into dew and rain events which may form a reference standard, or be modified for use, in future studies

    New insights into large tropical tree mass and structure from direct harvest and terrestrial lidar

    Get PDF
    A large portion of the terrestrial vegetation carbon stock is stored in the above-ground biomass (AGB) of tropical forests, but the exact amount remains uncertain, partly owing to the lack of measurements. To date, accessible peer-reviewed data are available for just 10 large tropical trees in the Amazon that have been harvested and directly measured entirely via weighing. Here, we harvested four large tropical rainforest trees (stem diameter: 0.6–1.2 m, height: 30–46 m, AGB: 3960–18 584 kg) in intact old-growth forest in East Amazonia, and measured above-ground green mass, moisture content and woody tissue density. We first present rare ecological insights provided by these data, including unsystematic intra-tree variations in density, with both height and radius. We also found the majority of AGB was usually found in the crown, but varied from 42 to 62%. We then compare non-destructive approaches for estimating the AGB of these trees, using both classical allometry and new lidar-based methods. Terrestrial lidar point clouds were collected pre-harvest, on which we fitted cylinders to model woody structure, enabling retrieval of volume-derived AGB. Estimates from this approach were more accurate than allometric counterparts (mean tree-scale relative error: 3% versus 15%), and error decreased when up-scaling to the cumulative AGB of the four trees (1% versus 15%). Furthermore, while allometric error increased fourfold with tree size over the diameter range, lidar error remained constant. This suggests error in these lidar-derived estimates is random and additive. Were these results transferable across forest scenes, terrestrial lidar methods would reduce uncertainty in stand-scale AGB estimates, and therefore advance our understanding of the role of tropical forests in the global carbon cycle

    Measuring the vertical profile of leaf wetness in a forest canopy

    Get PDF
    Plant canopies are wet for substantial amounts of time and this influences physiological performance and fluxes of energy, carbon and water at the ecosystem level. Leaf wetness sensors enable us to quantify the duration of leaf wetness and spatially map this to canopy structure. However, manually analysing leaf wetness data from plot-level experiments can be time-consuming, and requires a degree of subjective judgement in delineating wetness events which can lead to inconsistencies in the analysis. Here we: • Describe how to set up an array of leaf wetness sensors (Phytos 31, Meter) enabling the measurement of leaf wetness duration through the profile of a forest canopy, • Present a method and R script to objectively identify and distinguish periods of rain and dew from the output of leaf wetness sensors, Provide a criteria for separating the leaf wetness sensor output into dew and rain events which may form a reference standard, or be modified for use, in future studies.UK NERC grants NE/J011002/1 and NE/N006852/1 to PM; CNPQ grant 457914/2013-0/MCTI/CNPq/FNDCT/LBA/ESECAFLOR to ACLD; EU FP7-Amazalert grant to PM

    Vapour pressure deficit modulates hydraulic function and structure of tropical rainforests under nonlimiting soil water supply

    Get PDF
    Atmospheric conditions are expected to become warmer and drier in the future, but little is known about how evaporative demand influences forest structure and function independently from soil moisture availability, and how fast-response variables (such as canopy water potential and stomatal conductance) may mediate longer-term changes in forest structure and function in response to climate change. We used two tropical rainforest sites with different temperatures and vapour pressure deficits (VPD), but nonlimiting soil water supply, to assess the impact of evaporative demand on ecophysiological function and forest structure. Common species between sites allowed us to test the extent to which species composition, relative abundance and intraspecific variability contributed to site-level differences. The highest VPD site had lower midday canopy water potentials, canopy conductance (gc), annual transpiration, forest stature, and biomass, while the transpiration rate was less sensitive to changes in VPD; it also had different height–diameter allometry (accounting for 51% of the difference in biomass between sites) and higher plot-level wood density. Our findings suggest that increases in VPD, even in the absence of soil water limitation, influence fast-response variables, such as canopy water potentials and gc, potentially leading to longer-term changes in forest stature resulting in reductions in biomass

    Plant traits controlling growth change in response to a drier climate

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordPlant traits are increasingly being used to improve prediction of plant function, including plant demography. However, the capability of plant traits to predict demographic rates remains uncertain, particularly in the context of trees experiencing a changing climate. Here we present data combining 17 plant traits associated with plant structure, metabolism and hydraulic status, with measurements of long-term mean, maximum and relative growth rates for 176 trees from the world’s longest running tropical forest drought experiment. We demonstrate that plant traits can predict mean annual tree growth rates with moderate explanatory power. However, only combinations of traits associated more directly with plant functional processes, rather than more commonly employed traits like wood density or leaf mass per area, yield the power to predict growth. Critically, we observe a shift from growth being controlled by traits related to carbon cycling (assimilation and respiration) in well-watered trees, to traits relating to plant hydraulic stress in drought-stressed trees. We also demonstrate that even with a very comprehensive set of plant traits and growth data on large numbers of tropical trees, considerable uncertainty remains in directly interpreting the mechanisms through which traits influence performance in tropical forests.Conselho Nacional de Desenvolvimento Científico e TecnológicoNatural Environment Research Council (NERC)Australian Research Council (ARC)European Union FP7Fundação de Amparo à Pesquisa do Estado de São Paul

    The response of carbon assimilation and storage to long‐term drought in tropical trees is dependent on light availability

    Get PDF
    Whether tropical trees acclimate to long‐term drought stress remains unclear. This uncertainty is amplified if drought stress is accompanied by changes in other drivers such as the increases in canopy light exposure that might be induced by tree mortality or other disturbances. Photosynthetic capacity, leaf respiration, non‐structural carbohydrate (NSC) storage and stomatal conductance were measured on 162 trees at the world's longest running (15 years) tropical forest drought experiment. We test whether surviving trees have altered strategies for carbon storage and carbon use in the drier and elevated light conditions present following drought‐related tree mortality. Relative to control trees, the surviving trees experiencing the drought treatment showed functional responses including: (a) moderately reduced photosynthetic capacity; (b) increased total leaf NSC; and (c) a switch from starch to soluble sugars as the main store of branch NSC. This contrasts with earlier findings at this experiment of no change in photosynthetic capacity or NSC storage. The changes detected here only occurred in the subset of drought‐stressed trees with canopies exposed to high radiation and were absent in trees with less‐exposed canopies and also in the community average. In contrast to previous results acquired through less intensive species sampling from this experiment, we also observe no species‐average drought‐induced change in leaf respiration. Our results suggest that long‐term responses to drought stress are strongly influenced by a tree's full‐canopy light environment and therefore that disturbance‐induced changes in stand density and dynamics are likely to substantially impact tropical forest responses to climate change. We also demonstrate that, while challenging, intensive sampling is essential in tropical forests to avoid sampling biases caused by limited taxonomic coverage.Publicado online em 29 set. 2020

    Meeting the mammography screening needs of underserved women: the performance of the National Breast and Cervical Cancer Early Detection Program in 2002–2003 (United States)

    Get PDF
    OBJECTIVE: To examine the extent to which the National Breast and Cervical Cancer Early Detection Program (Program) has helped to meet the mammography screening needs of underserved women. METHODS: Low-income, uninsured women aged 40–64 are eligible for free mammography screening through the Program. We used data from the U.S. Census Bureau to estimate the number of women eligible for services. We obtained the number of women receiving Program-funded mammograms from the Program. We then calculated the percentage of eligible women who received mammograms through the Program. RESULTS: In 2002–2003, of all U.S. women aged 40–64, approximately 4 million (8.5%) had no health insurance and had a family income below 250% of the federal poverty level, meeting Program eligibility criteria. Of these women, 528,622 (13.2%) received a Program-funded mammogram. Rates varied substantially by race and ethnicity. The percentage of eligible women screened in each state ranged from about 2% to approximately 79%. CONCLUSIONS: Although the Program provided screening services to over a half-million low-income, uninsured women for mammography, it served a small percentage of those eligible. Given that in 2003 more than 2.3 million uninsured, low-income, women aged 40–64 did not receive recommended mammograms from either the Program or other sources, there remains a substantial need for services for this historically underserved population
    corecore