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Success in life for any seedling requires the simultaneous acquisition of resources from soil 25 

and atmosphere. This must be coupled to an ability to distribute these resources to the 26 

points of use above and below ground, and to house the distribution system within resilient 27 

woody structures.  The cells comprising these lignified structures – roots, stems and 28 

branches – need to be constructed, maintained and defended. To do so requires chemical 29 

energy which is almost entirely derived from respiration. However, despite the fundamental 30 

role woody tissue plays in driving life in most terrestrial ecosystems, it has received much 31 

less research attention than has the physiology of its greener counterpart, the leaf. To some 32 

extent this difference reflects the challenge of understanding the metabolically distinct 33 

tissues and related fluid and solute movements that occur simultaneously in wood. 34 

Advanced models of xylem and phloem function and of cambial growth have existed for a 35 

few years (e.g., Hölttä et al. 20072006, 2010, de Schepper et al.& Steppe 2010, Mencuccini 36 

et al. 2013), but Salomón et al’s new paper (NP page details) takes a notable step forward 37 

integrating and advancing these approaches. Their model ‘TReSpire’ combines 38 

representations of the essential properties of both phloem and xylem, the use of phloem-39 

derived sugars to produce irreversible cellular growth, together with the activity and 40 

physical properties of associated tissues (e.g., cambium, parenchyma, bark). TReSpire 41 

describes the variation in the flux of carbon dioxide (CO2) from tree bark, its underlying 42 

respiratory production by both growth and maintenance processes, and its transport, 43 

limited by energy expenditure and the fundamental physical constraints of pH, 44 

concentration gradients, stem carbon density and diffusive resistances.  45 

 46 

The flux of CO2 from woody tissue is thought to comprise up to 40% of total respiration from 47 

vegetation (Campioli et al. 2016, Yang et al. 2016). Hence, quantifying how it responds to 48 

disturbance or climate has substantial consequences across scales, from the carbon budgets 49 

of individual plants to the terrestrial biosphere (Meir & Grace 2002, Reich et al. 2006, 50 

Huntingford et al. 2017, West et al. 2019).  However, woody tissue respiration has proved 51 

difficult to quantify accurately. Most efforts have used chamber-based measurements of 52 

CO2 efflux from tree stems (Ea) usually at 1-2 m above ground, then related these fluxes to 53 

sap wood volume, or to tree-size metrics (woody tissue area or volume), and assumed a 54 

simplified tree structure to extrapolate to whole trees or stands (Ryan et al. 1997, Meir et al. 55 

2017).   56 

 57 

Even before scaling to a whole tree, the physiological signals in Ea require interpretation 58 

because they reflect multiple sink and source processes occurring below the outer bark. In 59 

addition to cellular respiration, Ea fluxes may be affected by CO2 carried in the transpiration 60 

stream (Levy et al. 1999, Teskey et al. 2008), by biochemical consumption, e.g., through 61 

cortical photosynthesis or PEP-carboxylase metabolism (Angert et al. 2012), and by diffusion 62 

constraints imposed by tissue properties and stem size (Steppe et al. 2007). Salomón et al. 63 

have formalised much of this complexity for the first time in a combined model that fuses 64 

bark and xylem hydraulics with two additional sub-models that quantify carbohydrate use in 65 
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respiratory metabolism and growth, together with the dynamics of phloem unloading and 66 

consequent carbon balance. 67 

The determination of respiration in Salomón et al.’s model is anchored in the classical 68 

growth-maintenance paradigm (Thornley 1970, Amthor 2000). This assumes a constant 69 

construction respiration cost for biomass of a given elemental composition, and uses live 70 

tissue nitrogen content and temperature to drive short-term responses in maintenance 71 

respiration (Cannell and Thornley 2000). The simulated mass balance ultimately links 72 

fluctuations in cell turgor and stem diameter all the way through to Ea values (Figs 1,2, 73 

Salomón et al., this issue).  A key advance is that the processes and storage terms 74 

determining Ea can be resolved separately at sub-daily temporal resolution as well as over 75 

the longer term. The model outputs are broadly consistent with observations reported 76 

elsewhere as well as with the detailed experimental measurements made to test the model. 77 

This provides initial confidence in the model outputs, despite the sparse validation data for 78 

some variables, such as non-structural carbohydrate concentration.  79 

 80 

Besides a more integrated representation of respiratory processes, TReSpire also aims to 81 

reduce some of the uncertainties that still surround stem growth. Irreversible radial growth 82 

consists of the processes of cambial cell differentiation, cellular periclinal division, radial 83 

enlargement, subsequent wall thickening via lignification of the secondary wall and final 84 

programmed cell death (Rossi et al. 2006).  High-precision dendrometry and/or repeated 85 

micro-coring coupled with wood anatomical analysis are generally used to quantify these 86 

processes. The first method (also employed here) provides rich time-series of highly time-87 

resolved data. However, at least three processes contribute to the observed 88 

shrinking/swelling signals measured by dendrometers at the hourly and daily scale, i.e., bark 89 

hydraulic capacitance driven by xylem water potential (Zweifel et al. 2016), radial water 90 

transport associated with osmotic changes in bark (de Schepper et al.& Steppe 2010) and/or 91 

xylem and irreversible growth. Disentangling these processes has become possible recently 92 

(Mencuccini et al. 2017) and these new advances are incorporated in TReSpire. By contrast, 93 

micro-coring provides less capacity to resolve processes at the daily scale and is inherently 94 

destructive by nature. However, compared to dendrometry, it has significant advantages in 95 

its capacity to identify individual phenological phases and thus attribute metabolic costs to 96 

each one of them at the seasonal time scale (Rossi et al. 2006; Cuny et al., 2015). 97 

 98 

Because interpreting dendrometry signals at diurnal and seasonal time scales remains 99 

challenging, fundamental questions over the relative roles of hydraulic (e.g., turgor) versus 100 

metabolic (e.g., carbon supply, carbon demand) variables on the control of wood growth 101 

have remained unanswered. The insights provided by TReSpire are exploited to separate the 102 

detailed time-dynamics not only of respiratory fluxes but also of the subtending irreversible 103 

growth processes. Such an approach has the potential to help address outstanding 104 

questions, including the impact of high vapour pressure deficit or reduced soil water 105 

availability on the rate of radial growth. Coupled with additional measurements of the rate 106 
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of photosynthesis and carbohydrate content, it may also shed light on the balance between 107 

storage, source-driven and sink-driven processes. Interestingly, the authors report that the 108 

stem growth rate (in sucrose equivalents) of a young Norway maple tree was lowest in late 109 

afternoon, accelerated during the night and peaked in early morning, remaining relatively 110 

high also during the middle part of the day. This finding casts doubts over the generally held 111 

view that radial xylem growth occurs only during night-time periods of maximum cellular 112 

turgor, but is consistent with growth pattern reports for some Eucalyptus species 113 

(Mencuccini et al. 2017). 114 

 115 

Some of the key measurements used to calibrate the model included high-resolution stem 116 

diameter changes, sap flux and chamber-based Ea fluxes. Given the significance of 117 

dendrometric measurements for the present analysis and the interest in establishing 118 

dendrometric monitoring networks in carbon cycle studies, it is now a priority to examine 119 

the comparability of the widely different approaches employed for this purpose. 120 

Dendrometer systems vary widely in their design and capacity to account for radial changes 121 

in xylem and bark, among other factors. They also differ depending on whether they 122 

measure point radius, diameter and/or circumference changes. Their temperature 123 

sensitivity and the significance of temperature and water content changes in various tissue 124 

compartments (including potentially the heartwood of large trees) will need to be examined 125 

carefully. 126 

 127 

A new overall view is thus presented by Salomon et al. of how respiration can vary hourly in 128 

the context of stem hydraulic dynamics and growth, with quantitative account also taken of 129 

the effects of changes in the transport of CO2 in the xylem stream and in the changes in 130 

gaseous and dissolved CO2 concentrations in different tissues.  For example, detailed in situ 131 

measurements have shown that Ea fluxes can often be less than the overall respiration rate 132 

(Rs) of underlying cells (Angert et al. 2012, Teskey et al. 2008). TReSpire replicates this 133 

mechanistically: over a 24 hr cycle, the modelled ratio of Ea/Rs varies between 0.7 and 1, 134 

matching field measurements (Angert et al. 2012, Hilman et 2018). However, this 135 

agreement breaks down at sub-daily timescales, where diurnal Ea/Rs ratios are more stable 136 

(Hilman et al. 2018) than the modelled outputs, which overestimate Ea at night. A 137 

discrepancy of this sort highlights the advantages accrued by comparing a mechanistic 138 

model with field data, and points to the need not just to understand additional processes 139 

causing the removal of locally respired CO2 (Angert et al. 2012), but also when different 140 

processes might dominate the signals in Ea and Rs. 141 

 142 

TReSpire has only been validated against saplings thus far, and whilst data on Ea remain 143 

relatively sparse for all ecosystems (Yang et al 2016), it is clear that the relationship 144 

between Ea and woody limb size varies strongly. Ea has often been represented as a function 145 

of sapwood volume, outer bark diameter and/or bark surface area (e.g., Ryan et al. 1997, 146 

Levy et al. 1998, Chambers et al. 2004), though the increased CO2 transport associated with 147 



5 
 

the larger sap flux that occurs in bigger trees was recently found to explain much variation 148 

in Ea with stem size in one species, Liridendron tulipifera (Fan et al. 2017). TReSpire could be 149 

used to simulate similar datasets, and in combination with field data, to explore the 150 

mechanistic underpinnings of Ea and Rs in large trees under varying environmental 151 

conditions (e.g., Metcalfe et al. 2010). Whilst it is unclear how well the classical assumptions 152 

of constant cost for different respiration components will hold over large changes in 153 

temperature or moisture availability (O’Leary et al. 2019), the integration of hydraulics and 154 

respiration in one model may help interpret how respiration varies with limb size and 155 

growth conditions. 156 

 157 

To proceed from limb to whole tree, a fine-scale model requires additional information on 158 

tree structure. The difficulty of acquiring such data has until now forced a reliance on 159 

destructive harvests to enable extrapolation of chamber-based Ea measurements to 160 

estimate CO2 emissions from whole trees.  Whilst some of this work has yielded apparently 161 

general power-law descriptions of respiration with total biomass (Mori et al. 2010), 162 

sensitivity to the power-law exponents is high, and the approach has not yet fitted easily 163 

into mechanistic models of tree function. New terrestrial laser scanning methods offer a 164 

way to significantly advance how we scale tree physiology from limb to tree, by enabling the 165 

rapid high-resolution measurement of full tree structure, for hundreds of trees (Meir et al. 166 

2017). Laser-scanning methods are advancing rapidly and will likely deliver tree structural 167 

data for large forested areas within a few years, with wide application in ecological and 168 

forestry science (Disney et al. 2018).  169 

 170 

Moving up further-still in scale, from tree to ecosystem, the integration of such a 171 

comprehensive description of tree form with the new mechanistic detail that is embedded 172 

in TReSpire should help in specifying the carbon cost and climate-responsiveness of woody 173 

tissue respiration at large scale. These kinds of new datasets are urgently needed to 174 

examine how land-surface models perform under climate change (cf. Huntingford et al. 175 

2017). Until now such vegetation models have made the weakly-tested assumption that the 176 

respiration of woody tissue can be derived simply from leaf respiration rates, based on 177 

biomass, tissue nitrogen concentration and temperature. TReSpire is a new addition to the 178 

toolbox needed to determine these key components of the carbon budget of trees and 179 

forests, and thereby advance how we understand the fundamental respiration cost of tree 180 

size, and how this bears upon land-atmosphere interactions.  181 

 182 
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