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Summary

� Plant traits are increasingly being used to improve prediction of plant function, including

plant demography. However, the capability of plant traits to predict demographic rates

remains uncertain, particularly in the context of trees experiencing a changing climate.
� Here we present data combining 17 plant traits associated with plant structure, metabolism

and hydraulic status, with measurements of long-term mean, maximum and relative growth

rates for 176 trees from the world’s longest running tropical forest drought experiment.
� We demonstrate that plant traits can predict mean annual tree growth rates with moderate

explanatory power. However, only combinations of traits associated more directly with plant

functional processes, rather than more commonly employed traits like wood density or leaf

mass per area, yield the power to predict growth. Critically, we observe a shift from growth

being controlled by traits related to carbon cycling (assimilation and respiration) in well-wa-

tered trees, to traits relating to plant hydraulic stress in drought-stressed trees.
� We also demonstrate that even with a very comprehensive set of plant traits and growth

data on large numbers of tropical trees, considerable uncertainty remains in directly interpret-

ing the mechanisms through which traits influence performance in tropical forests.

Introduction

Uncertainty concerning the net carbon balance of tropical ecosys-
tems propagates to generate one of the greatest uncertainties in
the global carbon budget (Tian et al., 2020; Piao et al., 2020).
Tree growth is a key plant demographic rate and, jointly with
losses from mortality and gains from growth, determines the car-
bon balance of tropical forests. Carbon gains from growth are
sensitive to increasing temperatures and reductions in water avail-
ability, and this sensitivity is likely to lead to a continued decline
in the net carbon sink of tropical forests over the coming decades
(Jung et al., 2017; Liu et al., 2018; Y. Yang et al., 2018; Hubau
et al., 2020; Sullivan et al., 2020). The ecophysiological processes
controlling growth rates, particularly within species-diverse
tropical systems, are still poorly understood, preventing more
robust predictions of how changes in climate may alter growth
trajectories.

Plant functional traits are commonly used to predict plant and
ecosystem function (Reich et al., 1997; Poorter et al., 2008;
Kattge et al., 2011; Diaz et al., 2016; Kunstler et al., 2016). This
is largely because at large geographical scales, plant traits have
been found to cluster and form trade-offs associated with leaf
photosynthetic, wood density or plant life-history strategies
(Wright et al., 2004; Chave et al., 2009; Pati~no et al., 2012; Adler
et al., 2014; Diaz et al., 2016; Mencuccini et al., 2019). However,
considerable uncertainty remains concerning how plant traits are
linked to plant demographic rates (Liu et al., 2016; Falster et al.,
2018; J. Yang et al., 2018).

Correlations between demographic rates and plant traits have
focused on the leaf economic and the wood economic spectra
(LES; WES; Wright et al., 2004; Falster & Westoby, 2005;
Poorter et al., 2008; Chave et al., 2009; Poorter et al., 2014; Liu
et al., 2016; J. Yang et al., 2018). Correlations of such traits with
key demographic rates are often weak (Wright et al., 2010; Paine
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et al., 2015; J. Yang et al., 2018) and inconsistent among individ-
uals under different light conditions and, in particular, of differ-
ent sizes (Falster et al., 2018). This is potentially because the
physiological processes for which these traits act as surrogates can
change across scales. Common plant trait trade-offs observed at
global scales across a broad range of plant functional types (PFT)
often break down at local and regional scales or when only one
PFT is considered (Messier et al., 2017; Anderegg et al., 2018).
Hence, relationships observed at global scales (e.g. Kunstler et al.,
2016) are often not suitable for effective use at local scales.

Finding traits related to or directly controlling the physiology
of productivity (e.g. growth) of plants is challenging. Traits that
are more complex to measure, such as plant hydraulic or photo-
synthetic traits, may be more representative of a plant’s function-
ing, but these more complex traits remain poorly sampled
globally (Eller et al., 2018a). Additionally, these ‘mechanistic’
traits may combine in multiple ways to maximise growth. Indeed,
traits at the scale of an individual organ can be compensated for
by changes in, for example, a tree’s size, light availability or allo-
cation shifts across tissues (Gibert et al., 2016; Falster et al., 2018;
Y. Yang et al., 2018). In turn, this requires simultaneous samples
of several metabolic, water use and structural traits, particularly
within diverse tropical ecosystems with complex vertical varia-
tions in canopy structure.

In tropical forests, size-modulated differences in growth and
functional traits are important in the context of the changes in
exposure, light availability and water demand which occur as a
tree grows in size through the canopy (Grime, 1998; Falster &
Westoby, 2005; Gibert et al., 2016; Thomas & Vesk, 2017).
However, whether changes in light environment and tree size
affect the relationships between tree growth rates and plant traits
has been poorly explored.

Understanding relationships between plant traits and growth is
central to improving our mechanistic understanding of how plant
physiology is linked to plant demographics. These relationships
between plant physiology and demographic processes are often
emergent properties of vegetation models (Fyllas et al., 2014;
Fisher et al., 2015; Fyllas et al., 2017). Variation in plant growth
across different PFTs is controlled by PFT-specific parameters,
which determine form and rates of processes controlling carbon
production, allocation and use (Fyllas et al., 2014, 2017; Harper
et al., 2016; Xu et al., 2016; Powell et al., 2018). Trait values and
physiological mechanisms controlling growth are generally kept
fixed during model runs (e.g. Harper et al., 2016). However,
increasing drought stress under future climate scenarios, both in
terms of more frequent extreme events (Duffy et al., 2015; Zhou
et al., 2019) and long-term declines in soil moisture availability
(IPCC, 2019), can potentially change the key mechanisms con-
trolling plant growth.

Large-scale field experiments offer a means to test how trait–
growth relationships may change over long timescales. These
experiments are often restricted to manipulating one climate vari-
able at a time and are limited in spatial extent and replication, yet
they provide vegetation models with data on responses to longer-
term climatic change (e.g. multi-year to decadal; Estiarte et al.,
2016). Utilising the world’s longest running tropical forest

drought experiment as a case study, we explore how the relation-
ships between plant traits and growth rates change when trees are
exposed to prolonged soil drought stress. This experiment caused
extensive changes in canopy structure, which arose as a conse-
quence of drought-induced mortality (da Costa et al., 2010;
Rowland et al., 2015a), also allowing the influence of the chang-
ing tree light environment to be evaluated. We test the following:
how well simple traits from the LES and WES control growth
rates, relative to more complex traits related to plant metabolism
and water transport; whether the key traits determining growth
rates change from well-watered to drought-stressed conditions;
and whether tree size and light environment influence growth
rates more than phylogeny, either directly or via controls on other
plant functional traits.

Methods

Experimental site

We used the Caxiuan~a through-fall exclusion (TFE) experiment,
located in eastern Amazonia (lat. 1°430S, long. 51°270W), as our
focal study site. From 2010 to 2016 the rainfall at our site was on
average 2365 mm yr–1, mainly concentrated into a 6-month wet
season (December–May). The experiment consists of two plots, a
1-hectare (ha) TFE, where a plastic panel structure has been used
to exclude 50% of the canopy through-fall since 2002, and a cor-
responding control forest plot. This site provides several advan-
tages for testing our hypotheses, because the TFE plot has
experienced extensive mortality, opening up the forest canopy
(Rowland et al., 2015a) and reducing the light limitation on the
understory, therefore providing a contrast between a forest which
is likely to have a greater water limitation and one which is likely
to be more light- than water-limited. Further details on the
experimental set-up and results of the experiment to date are
available (Fisher et al., 2006; da Costa et al., 2010; Rowland
et al., 2015b; Meir et al., 2018).

Tree and trait sampling

In peak dry season (September and October) 2016 we sampled
176 trees of the most common genera on both plots – 86 trees on
the control and 90 trees on the TFE (Supporting Information
Table S1). These trees were selected to cover the most dominant
genera which existed on both plots and, where possible, to have a
distribution across different tree size classes (from 10 cm diameter
at breast height (DBH, at 1.3 m), upwards) and with different
canopy light conditions within genera and common species. In
total 14 genera and 31 species were sampled. We sampled 17
traits, which are given in Table 1 along with the acronyms, a
description and the mean plot-scale values (see Dataset S1 for the
full dataset used in this study). We note that of the traits sampled,
some may be more traditionally considered to be traits within the
literature (e.g. leaf mass per area (LMA), leaf nitrogen content
(Nleaf), leaf phosphorus content (Pleaf), maximum carboxylation
capacity (Vcmax), maximum electron transport capacity (Jmax),
leaf respiration in the dark (Rleaf), branch wood density (q),
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xylem pressure for a 50% loss of conductance (P50), maximum
lumen conductance (Ks_max), whereas others (e.g. pre-dawn leaf
water potential (Ψpd), midday leaf water potential (Ψmd) may be
considered more as indicator variables which signal the current
physiological status of the plant. As measurements occurred dur-
ing peak dry season, we consider both Ψpd and Ψmd to be impor-
tant variables to consider in relation to growth. We consider Ψpd

to be an integrated metric of rooting depth or minimum soil
water availability (Bartlett et al., 2016) and Ψmd to represent the
minimum annual Ψ (water potential) of the plant. Consequently,
we then compute the plant hydraulic safety margin (SMP50) as
P50 – Ψmd, assuming it represents the minimum average annual
value (e.g. Choat et al., 2012), and we also assume that our per-
centage loss of conductivity (PLC) value represents the maximum
annual average. We therefore assume that these variables give an
indicator of the maximum damage from embolism and hydraulic
risk that the trees are adapted to tolerate, and we refer to them
henceforth as ‘traits’ in this article. Furthermore, given that exist-
ing research at this site demonstrates that a large proportion (two
thirds to three quarters) of stem respiration from our study trees
is likely to be related to maintenance, rather than growth respira-
tion (Rowland et al., 2018), we consider stem CO2 efflux (Rstem),
standardised to a set temperature (as also done with Rleaf, which
is more broadly considered a plant trait), to be a key variable that
could be influencing potential growth rates, possibly reflecting
phloem transport and source/sink relationships. We acknowledge
that the variables we call ‘traits’ herein are not all traits in the tra-
ditional sense. They are, however, standardised to estimate
moments of their respective statistical distributions, much as it is
done for variables within the LES and WES, and they therefore
have a justifiable link to the controls of growth rates.

To sample these traits, three branches collected from the same
tree were gathered each day. All branches were fully sunlit from
the upper canopy if the tree received direct sunlight, or were top-

of-canopy branches if the trees were small or shaded. The first
branch was cut between 04:30 h and 06:30 h and used to measure
pre-dawn leaf water potential (Ψpd); following this, it was sealed
in a large black plastic bag and returned to a lab 1 km away. Here
it was re-hydrated for 24 h, re-cut underwater and used to mea-
sure hydraulic vulnerability curves to calculate the P50 value. To
find the P50 value, the pneumatic method was used (Pereira et al.,
2016) – the branch samples were progressively dried out whilst
percentage air discharge and leaf Ψ were measured to form the
vulnerability curve (Fig. S1).

A second branch was cut between 10:00 h and 12:00 h. The
leaves on this branch were used to measure maximum carboxyla-
tion capacity (Vcmax) and maximum electron transport rates
(Jmax), derived from an A–Ci curves taken with a Li-Cor 6400
photosynthesis system (Li-Cor, Lincoln, NE, USA). On the same
branch the Li-Cor 6400 was also used to measure Rleaf, minimal
stomatal conductance (Mings) and maximum stomatal conduc-
tance (Maxgs). Samples were also taken to measure Pleaf, Nleaf and
LMA.

A third branch, ≥ 2 m in length, was cut between 13:00 h and
14:00 h, and three leaves were used to measure Ψmd. This branch
was then sealed in a large black plastic bag and returned to the
lab, where it was used to measure PLC and Ksmax, both following
a previously described method (Pereira & Mazzafera, 2012). A 1-
cm diameter section from this branch was used to measure q, and
leaf area to sapwood area ratio (LA : SA) was also measured on
this branch. Leaf area was measured by scanning all leaves on the
branch and quantifying their area using IMAGEJ software
(v.1.6.0_20; Schneider et al., 2012). We calculated LA : SA as
total branch leaf area divided by basal sapwood area. Detailed
methodologies for the collection of all of these traits can be found
in Methods S1 and, for the hydraulic traits, in a study by Bitten-
court et al. (2020), from where these data were taken. Rstem mea-
surements were made in October 2016 using a gas analyser

Table 1 List of all measured traits, descriptions, mean values, standard error vales and sample sizes for the control (C) and through-fall exclusion (D) plots.

Trait Description C value D value n trees

Vcmax Max. carboxylation capacity (lmol CO2 m
�2 s�1) 23.94� 0.90 22.48� 0.84 C = 84, D = 76

Jmax Max. electron transport capacity (lmol CO2 m
�2 s�1) 45.75� 1.62 41.92� 1.68 C = 84, D = 76

Rleaf Leaf respiration in the dark (lmol CO2 m
�2 s�1) 0.62� 0.04 0.65� 0.03 C = 85, D = 86

Min gs Min. stomatal conductance (mmol CO2 m
�2 s�1) 0.04� 0.00 0.03� 0.00 C = 83, D = 86

Max gs Max. stomatal conductance (mmol CO2 m
�2 s�1) 0.11� 0.01 0.09� 0.01 C = 83, D = 76

Rstem Stem CO2 efflux (lmol CO2 m
�2 s�1) 0.93� 0.07 0.97� 0.07 C = 74, D = 83

LMA Leaf mass per area (g m�2) 63.68� 1.65 65.28� 2.16 C = 82, D = 75
Nleaf Leaf nitrogen content (g g�1) 18.30� 0.55 17.51� 0.71 C = 66, D = 67
Pleaf Leaf phosphorus content (g g�1) 0.40� 0.02 0.51� 0.02 C = 78, D = 84
q Branch wood density (g cm�3) 0.66� 0.01 0.64� 0.01 C = 76, D = 80
Ψpd Pre-dawn leaf water potential (MPa) 0.55� 0.03 0.69� 0.04 C = 85, D = 90
Ψmd Midday leaf water potential (MPa) 1.90� 0.06 2.00� 0.07 C = 85, D = 90
P50 Xylem pressure for a 50% loss of conductance (MPa). 2.22� 0.15 2.44� 0.15 C = 52, D = 56
Ks_max Max. lumen conductance (mol H2O mMPa�1 s�1 m�2) 190.84� 14.53 184.97� 15.00 C = 73, D = 71
PLC Percentage loss of conductivity 14.03� 1.65 22.73� 2.24 C = 73, D = 72
SMP50 Hydraulic safety margin, calculated from Ψmd and P50 (MPa) 0.59� 0.11 0.80� 0.12 C = 52, D = 56
LA : SA Leaf area to sapwood rea ratio 10321.61� 619.20 10479.86� 654.27 C = 63, D = 66

Additional details regarding the methods used for the trait collection are shown in Supporting Information Methods S1, and the full dataset is available as
Dataset S1.
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attached to a closed-loop system in a 75 cm2 area of each of our
study trees. These data were taken from a study by Rowland et al.
(2018), where a full methodology can be found (see also Methods
S1 and Dataset S1). Growth rates were calculated for each tree
using mean stem increment data, which was measured every three
months using dendrometers, as presented in Rowland et al.,
(2015a). Mean growth increment was calculated by averaging
three-monthly growth rate data from 2010–2016 for each tree
and then log-transforming these data. Finally, during the trait
sampling period each tree was also given a light score from 1 to
5, as follows: score of 1, tree is in 100% shade; 2, tree is mostly
shaded, receiving limited direct sunlight; 3, tree receives direct
sunlight but remains partially shaded; 4, tree is top of canopy and
receives substantial direct sunlight; 5, tree canopy is entirely sun-
lit, usually being an emergent tree or existing in a canopy gap. A
detailed methodology for the collection of each trait is provided
in Methods S1.

Analysis

All statistical analyses were carried out in R (v.3.4.1; R Core
Team, 2014). For each trait in Table 1 outliers were removed by
excluding data points that were greater than three standard devia-
tions from the mean. The total number of data points, n, per trait
for the control and the TFE are shown in Table 1. We note that
P50 has a lower value of n because some of the curves could not

be successfully completed in the field. Due to the lognormal dis-
tribution of our response variable and 9 of the 17 traits (Kock,
1966; Mitchel, 1968; Limbert et al., 2001), these variables were
log-transformed for all subsequent analyses (Table 2). To enable
us to log transform our data, Ψpd, Ψmd and P50 values were con-
verted to positive values.

Initially all traits were individually linearly correlated with
mean growth across the whole year and during mid wet season
(Jan–March) and mid dry season (Jul–Sep) separately for the
control and drought plot trees, to evaluate the potential differ-
ences in the annual and seasonal controls on growth. Secondly,
to explore the role of the interactions of tree size and tree light
exposure in key trait–growth relationships, as well as to evaluate
whether traits interacted to influence growth, we used structural
equation modelling (Grace et al., 2010, 2012) to model the mean
growth separately for the trees in the control and drought plots.
To avoid excluding trees for which one or more traits were not
measured, we selected path analysis using the Full Information
Maximum Likelihood algorithm for our statistical analysis, as it
allows for missing (‘NA’, or not available, in R) values by assum-
ing a missing-at-random pattern of missingness (Enders & Ban-
dalos, 2001; Brown, 2006; Allison, 2012; Sinco et al., 2013).
Path analysis was undertaken using the LAVAAN package in R
(Rosseel, 2012). Relationships among traits and between traits
and growth rate were all tested equally based off a null model (to
facilitate analysis of individual traits, Fig. 1), which assumed that

Table 2 Results of linear regressions (correlation coefficient (R) and P-value (P)) for each plant trait against mean annual growth, maximum growth during
the wet season (Jan–Mar) and minimum growth during the dry season (Jul–Sept) (Q1, Jan–Mar; Q2, April–Jun; Q3, Jul–Sep; Q4, Oct–Dec) for the control
and drought plots.

Control Drought

Mean Wet Dry Mean Wet Dry

R P R P R P R P R P R P

Tree light score 0.27 0.02 0.36 0.00 0.49 0.00 0.15 0.19 0.21 0.07 0.29 0.03
DBH 0.38 0.00 0.38 0.00 0.45 0.00 0.27 0.01 0.18 0.11 0.43 0.00
Min gs 0.13 0.28 0.24 0.05 0.07 0.63 �0.03 0.79 0.11 0.36 0.10 0.45
Max gs 0.07 0.56 0.05 0.66 0.13 0.35 0.07 0.58 0.03 0.84 0.26 0.06
Vcmax 0.24 0.04 0.09 0.45 0.26 0.05 0.21 0.08 0.08 0.51 0.47 0.00
Jmax 0.32 0.01 0.17 0.16 0.31 0.02 0.38 0.00 0.29 0.02 0.46 0.00
Rleaf 0.02 0.87 0.04 0.72 0.17 0.21 0.20 0.08 0.22 0.05 0.08 0.57
Ks_max 0.13 0.33 0.12 0.35 0.07 0.64 0.07 0.61 0.15 0.23 0.15 0.31
PLC 0.05 0.73 0.11 0.39 0.10 0.47 0.04 0.75 0.15 0.23 0.16 0.29
P50 �0.26 0.09 0.04 0.82 0.14 0.43 �0.30 0.04 0.19 0.17 0.13 0.46
SMP50 0.26 0.08 0.06 0.71 0.05 0.77 �0.37 0.01 0.36 0.01 0.25 0.14
q 0.21 0.09 0.15 0.25 0.29 0.05 �0.01 0.97 0.03 0.78 0.14 0.32
Ψpd 0.19 0.11 0.22 0.06 0.15 0.28 0.10 0.35 0.17 0.14 0.13 0.31
Ψmd 0.15 0.21 0.27 0.02 0.13 0.35 0.19 0.08 0.32 0.00 0.24 0.06
LA : SA 0.08 0.56 0.02 0.86 0.06 0.72 0.09 0.51 0.10 0.45 0.11 0.48
Rstem 0.38 0.00 0.47 0.00 0.43 0.00 0.46 0.00 0.31 0.01 0.45 0.00
leaf_n 0.27 0.04 0.06 0.65 0.16 0.31 0.19 0.14 0.19 0.16 0.29 0.04
leaf_P 0.10 0.41 0.02 0.87 0.22 0.12 �0.13 0.28 0.12 0.29 0.04 0.76
LMA 0.04 0.72 0.09 0.44 0.25 0.07 0.05 0.66 0.13 0.30 0.06 0.66

Bold text and grey shaded cells indicate significant relationships at P < 0.05. Mean growth and the traits with lognormal distributions (variables in bold)
were log-transformed (see the Materials and Methods section). See also Supporting Information Fig. S1 for graphical representations of mean growth rela-
tionships from this table.
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all traits could be controlling growth. Traits were either consid-
ered to have direct correlations, with one variable directly influ-
encing another, or to co-vary together. Tree-level light
environment and DBH, and plot-level drought condition (con-
trol or drought plot) were also assumed to be able to influence
each trait, as well as each growth rate variable directly. Once the
null-path model was structured and run, sequential relationships
between variables, as well as individual variables, were removed
when they no longer significantly contributed to or connected to
the model. Following the criteria described in a study by Brown
(2006), relationships between variables were sequentially
removed if their P-value was nonsignificant (P < 0.05 based on z
tests and changes in Akaike information criterion (AIC) values),
and variables were removed if this decreased the Robust Maxi-
mum Likelihood statistic (RMLS), increasing the model v2 P-
value (i.e. the likelihood that no significant difference between
the model and the data structure was found). We note that,
unlike many other statistical models, the aim is to increase the P-
value and decrease the RMLS, in order to minimise the statistical
difference between the model and the data structure (Brown,
2006). The modification indices function (modindices) in the
LAVAAN package was also used to check whether any relationships
between variables that were not included in the final hypothesised
model could be used to improve the fit between the model and
the data.

To test the role of phylogeny in controlling trait relationships,
and specifically to test for an effect of the phylogenetic distance
between genera on the trait relationships with tree growth, we
performed phylogenetic generalised least squared regression
(PGLS) using the CAPER package in R (Orme, 2013). Phylogenetic
distance data for each of our genera was provided by Neves et al.
(2020). We also performed mixed-effect model analyses, using
the LME4 package (Bates et al., 2015), on all our significant path
analysis relationships to test the following: whether a model which
included genus or species nested within genus as a random effect
on the intercept had a lower AIC than one without it, and
whether large differences between the marginal (without genus as
a random variable) and conditional (with genus as a random vari-
able) R2 were found (LMERTEST package, Kuznetsova et al., 2017).

Results

Mean growth rates were 18% greater on the drought plot relative
to the control. This was driven by a significant increase in the
growth rate during mid wet season (Jan–Mar), rather than in
growth rates in any other quarter of the year (Fig. 2). Results
from bivariate linear correlations between our 17 traits with log-
transformed mean annual growth reveal that the strongest corre-
lation with log-transformed mean growth was with Rstem (Fig. 3.
Table 2), while Vmax and Jmax also showed significant (P < 0.05)
relationships in the control forest, with R values of 0.32 and 0.38
respectively (Table 2; Fig. S2). We note that converting these cor-
relations to mixed effects models with light score as a random fac-
tor did not significantly improve these correlations (P = 0.09–

Fig. 1 The initial path model which was minimised to most effectively predict relative, log-transformed mean growth rates (Mean G, black box) from a
suite of 15 traits (see the Materials and Methods section and Supporting Information Methods S1), in addition to tree diameter at breast height (DBH) and
tree light score (Light) and correlations among traits. Black solid arrows show direct correlations tested. For the model starting point it was assumed that
DBH and Light could influence all traits, all traits could influence the growth variable and all traits could influence each other – that is, no initial assumptions
were made about whether direct relationships were positive or negative.

Fig. 2 Shifts in the average growth across the four quarters of the year
(1 = Jan–Mar, 2 =Apr–Jun, 3 = Jul–Sep, 4 =Oct–Dec) on the control (black
line) and drought (grey line) plots, and the total rainfall over these same
periods averaged over 2010–2016. Error bars indicate the standard error
of the mean.
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0.99). Furthermore, in the control forest tree light score and
DBH also maintained significant relationships with mean annual
growth, with R values of 0.27 and 0.38, respectively. By contrast,
for the drought forest we find that alongside the correlations
found for Jmax (R = 0.38) and Rstem (R = 0.46), there is a strong
significant negative relationship between mean annual growth
and SMP50, which is absent in the control forest (Fig. 4; Table 2).
We also find a weaker but still significant negative correlation
with P50, represented as positive values (Table 2). Interestingly,
for the drought trees, relative to the control, a significant

relationship between mean annual growth and DBH is main-
tained, but the R2 value is reduced to 0.27, whilst the relationship
with tree light score is lost (Table 2). A full correlation matrix of
all traits is shown in Table S2.

The correlates with growth rate were more stable between the
dry and wet seasons for the control plot than they were for the
drought plot. For the control plot, three of the five variables that
correlated with mean annual growth also correlated with both
mean wet and dry season growth (Rstem, tree light score and
DBH; Table 2; Fig. S2) and these three traits were the strongest

(a) (b)

Fig. 3 Linear relationships between log mean growth rate and log stem respiration rate (Rstem) on the control (a) and drought (b) plots. The coloured
shading on the dots indicates the diameter at breast height of the trees (DBH, cm). The line indicates the significant linear regression line and the grey
shaded area represents the 95% confidence interval.

(a) (b)

Fig. 4 Linear relationships between log mean growth rate and the hydraulic safety margin (SMP50) on the control (a) and drought (b) plot. The coloured
shading on the dots indicates the tree light score of the trees. The line indicates the significant linear regression line and the grey shaded area represents the
95% confidence interval.
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three correlations across both the wet and dry seasons. By con-
trast, only Rstem and Jmax were found to be correlated with both
mean wet season and mean dry season growth rates on the
drought plot. The traits DBH, SMP50, Ψmd and Rstem had signifi-
cant correlations with wet season growth rates (Table 2; Fig. S2),
whereas dry season growth rates were only found to be correlated
with tree light score, DBH, Vcamx, Jmax, Rstem and Nleaf for the
drought plot trees. Furthermore, during the wet season, the sea-
son with the highest growth rates, the strongest correlations with
growth rates on the drought plot were found for traits related to
plant hydraulic properties (Table 2; Fig. S2). By contrast, during
the dry season, traits related to photosynthetic capacity and plant
respiration had the strongest correlations with growth on the
drought plot.

Using a path model analysis to determine how the measured
traits, alongside DBH and tree light score interact and combine
to determine log-transformed mean growth rates, we find the
minimum significant model for each of the plots to be consider-
ably different. On the control plot, when the 17 traits are tested
within a single model, we find that only Jmax and Rstem are
retained in the path model as directly influencing growth rate
(Fig. 5a). Combined, Jmax and Rstem control 21% of the varia-
tion in mean annual growth rates; however, 26% of the varia-
tion in Jmax is controlled directly by tree light score and Nleaf,
with an indirect effect of DBH on Nleaf (Fig. 5a). Additionally,
DBH explained 16% of the variation in Rstem. In contrast to
this finding, on the drought plot SMP50 and Rstem explain 29%
of the variance in mean annual growth rates, with no direct or
indirect effect of tree light score, but with 18% of the variation
in Rstem being explained by DBH (Fig. 5b). For both of these
path models we obtained a very good fit between the model
and the data, with the robust maximum likelihood scores < 10
and the P-value, describing statistical differences between the
model and the data, being 0.98 and 0.94 for the control and
drought plots, respectively (Table 3). We tested whether the
minimum significance model for the control plot (Fig. 5a)

provides the same predictive power for the drought plot
(Fig. S3). A direct connection between Jmax and mean annual
growth could not be found when considered in addition to the
relationship between Rstem and mean annual growth (Fig. S3).
Furthermore, the model presented in Fig. S3 had a greater AIC
and root mean square error and a much poorer fit to the data
(RMLS = 22.83; P = 0.63; Table 3).

Plant taxonomy was also found to be a poor predictor of mean
growth rates. In a mixed effect model analysis, the inclusion of
genus as a random effect on the intercept of models replicating
the relationships of mean growth rates with traits in Fig. 5 did
not significantly improve these models on either plot when the
likelihood values were compared within an ANOVA analysis (P-
values > 0.05; Table 4). Species nested within genus also provided
no significant improvement to the model over using genus alone
(data not shown). Phylogenetic least squared regression also
demonstrated that the phylogenetic distance between genera was
a poor predictor of mean growth rate. When the models for mean
growth from the path analyses (Fig. 5) were entered into a phylo-
genetic generalised least squared regression, the lambda parame-
ter remained equal to 0 (indicating all phylogenetic distances
were adjusted to have no effect) and the kappa and delta parame-
ters remained equal to 1, indicating no influence of phylogenetic
distance on our growth models.

Discussion

We demonstrate that a shift in environmental conditions strongly
influences the relationship between plant traits and growth rates
within tropical trees, with a distinct shift from growth being con-
trolled by traits relating to carbon production and use, to those
related to embolism resistance following prolonged drought
stress. We find that more complex traits that are likely to have
stronger relationships with mechanistic plant functions are much
better predictors of growth rates, with variables such as LMA and
q being particularly poor at predicting growth rates.

(a) (b)

Fig. 5 Result of the path analysis performed for log-transformed mean growth rate (Mean G, black box) on the control (a) and drought (b) plots. Variables
used in the path model to predict growth are shown in blue boxes, arrows represent positive (green) and negative (red) correlations (solid unidirectional
arrows). Grey numbers inside the circles indicate the R2 value for each variable within the path model, and numbers next to each arrow indicate the
standardised parameter coefficient estimates for each connection. Only arrows significant at P < 0.05 are shown. Statistical fits for the model are shown in
Table 2.
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The power of plant traits to predict growth

Overall, we find that when combined, plant traits can predict
between 20–30% of the variation in mean growth rate (Fig. 5).
The plant traits that are effective for these predictions are, how-
ever, often those which are less commonly measured, including
metrics relating to plant metabolism (photosynthesis and respira-
tion) and to plant hydraulic status (Fig. 5, Table 2). These traits
are more complex to measure than, for example, common traits
like LMA or q. However, we demonstrate that these more com-
plex traits are substantially more useful for predicting growth.
Furthermore, many of these more complex traits are increasingly
being incorporated into vegetation models (Christoffersen et al.,
2016; Xu et al., 2016; Venturas et al., 2018; Eller et al., 2018b;
Kennedy et al., 2019), increasing the value of investing effort into
building new trait databases which include structural, metabolic
and hydraulic plant traits (Mencuccini et al., 2019). This is of
particular importance within tropical ecosystems, where the chal-
lenge of collecting such data is substantially greater than in lower
diversity settings.

There has been considerable uncertainty concerning the ability
of plant traits to explain demographic rates in forests (Falster
et al., 2018; J. Yang et al., 2018), particularly within diverse trop-
ical forests (Paine et al., 2015; Liu et al., 2016). We find that

traits commonly associated with the LES and WES such as leaf
nutrient concentrations and LMA and q are not able to explain
common metrics of plant growth (Table 2, Figs 5, S4). This may
reflect these traits not being relevant outside of the LES (Moles,
2018) or only being relevant to growth at the initial stages of
ontogeny (seedling to sapling), which were not studied here (Fal-
ster et al., 2018). More surprisingly, we find no relationships
between q and growth rate (Table 2; Fig. S4).

It has been previously hypothesised that q constitutes a major
control on growth rates (Chave et al., 2009; Falster et al., 2018;
Phillips et al, 2019) and on the growth–mortality trade-off in trees
(Wright et al., 2010; Ruger et al., 2018). However, almost all the
studies that demonstrate this in tropical forests use species aver-
aged measures of wood density, which can generate fundamental
problems with predicting trait–growth relationships (Y. Yang
et al., 2018), in part through ignoring the large within-species
variation in wood density (Plourde et al., 2015; Lehnebach et al.,
2019; Momo et al., 2020). We argue that many of the trade-offs
which may exist within the WES justifying a link between q and
growth may break down at local scales when individual tree-by-
tree data are used (e.g. Poorter et al., 2018), as has also been shown
to occur in relation to traits in the LES (Messier et al., 2017;
Anderegg et al., 2018). This is likely related to the fact that
regional analyses use species-averaged values and are only capable
of evaluating potential trait relationships, whereas local analysis at
the scale of individuals can evaluate realised trait relationships,
accounting for the impact of environmental variability on individ-
ual performance (Poorter et al., 2018). The most common species
in mature tropical forests are arguably the most relevant to study
to understand how these forests may respond to future environ-
mental change. However, collectively these trees often span a rela-
tively narrow wood density gradient. Our study taxa, which
spanned many of the hyper-dominant species found across Ama-
zonia (ter Steege et al., 2013), had a mean and standard deviation
for q of 0.66� 0.10 g cm�3 and 0.72� 0.09 g cm�3 when mea-
sured directly or derived from estimates in the global wood density
database, respectively (Zanne et al., 2009). Furthermore, close-to-
zero correlations between growth rates and q on an individual
basis may be being caused by both high intraspecific and within-
tree variation in q (Table 2; Fig. S5; Plourde et al., 2015;
Lehnebach et al., 2019; Momo et al., 2020), alongside substantial
variations in growth rates and their responses to environmental
variables between trees of different sizes (Rowland et al., 2015a).
We note, however, that determining which measure of wood den-
sity to use to represent the whole-tree average is complex
(Lehnebach et al., 2019; Momo et al., 2020) and such correlations
may become more accurate at the stand scale if such an estimate
could be accurately derived. In the absence of this, at local scales q
may not always be a viable predictor of growth.

Within our study the majority of the variation in mean annual
growth rates could not be explained by the variations in the traits
we measured. This may be because other unmeasured factors,
such as competition with other trees (Rozendaal et al., 2020),
play a significant role. It may also be related to other key limita-
tions of our analysis, for example, the need to average growth
over multiple years, during which some of our study trees may

Table 3 Results of the path analyses.

Variable predicted
Fig. 3 Fig. 4

Plot Control Drought
Drought as
control

Robust Maximum Likelihood
score

8.60 4.09 22.83

P-value 0.98 0.94 0.63
Degrees of freedom 19 10 14
Root mean square error 0.00 0.00 0.09

The table gives the Maximum Likelihood statistic, the significance value for
how different the model is from the data, the degrees of freedom in each
path model and the root mean squared error of each model.

Table 4 Results from the mixed-effect models which were used to
investigate the relationships between the mean growth rates, maximum
wet season (Jan–Mar) growth rates, and minimum dry season (Jul–Sept)
growth rates as functions of the relevant fixed effects from the path
models.

Fig.
Dependent
variable

Fixed
effects

Random
effects

Marginal
R2

Conditional
R2 P

5(a) Control
Mean G

Jmax

Rstem

Genus 0.20 0.20 0.99

5(b) Drought
Mean G

Rstem

SMp50

Genus 0.36 0.48 0.14

For each case, the model was run with and without genus as a random
effect influencing the intercept of the model. The marginal R2 (excluding
the random effect of genus) and conditional R2 (including the random
effect of genus) values are shown alongside the P-values, indicating
whether a model including genus as a random effect was significantly bet-
ter than a model without it.
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have undergone a shift in light environment or trait values. This
may be one of the drivers behind the reduced correlation between
light scores and plant traits and growth in the drought plot path
models. However, Rstem did explain a significant portion of its
explained variance in growth (Fig 3; Table 2). A direct interpreta-
tion of the functional significance of growth–Rstem relationships
is however, complex, given the uncertainty in what Rstem may be
representing within the plant (Saveyn et al., 2008; Teskey et al.,
2008; Aubrey & Teskey, 2009). A previous analysis has shown
that a large amount of the Rstem flux in the trees on both plots
remains uncorrelated with growth and is more likely to represent
maintenance respiration, rather than growth respiration (Row-
land et al., 2018). This may be consistent with the greater correla-
tions with Rstem in the drought (Table 2), relative to the control
plot, where maintenance respiration rates are estimated to be sig-
nificantly higher (Rowland et al., 2018).

Shifting controls on growth with climate change

We observe major changes between the traits which control mean
annual growth and wet season to dry season growth rates in the
control trees relative to the drought trees (Figs 3, S2; Table 2).
Amongst the control trees, a consistent relationship with tree
light conditions suggests growth in this forest may be strongly
light-limited. Mean growth rates and particularly wet season
growth rates were, however, elevated amongst our drought
stressed trees. It is possible this is driven by prior drought-in-
duced mortality of large trees driving both increasing light avail-
ability (Rowland et al., 2015a; Fig. 2) and increasing availability
of water during the wet season through reducing belowground
competition. These elevated growth rates in the drought plot
showed consistent and significant relationships with plant
hydraulic traits (Table 2; Fig. 3), relationships which were absent
from the control trees. Critically, the plant traits that are impor-
tant in controlling growth, P50 and SMP50 are key metrics of
plant resistance to embolism and exposure to hydraulic risk.
These results suggest that growth rates are lower in trees with a
greater resistance to embolism and greater hydraulic safety mar-
gins, consistent with the hypothesis that the greater hydraulic
risks sustained by some tropical tree species can allow greater
growth rates during prolonged drought stress at the cost of
increased losses of conductivity (e.g. Eller et al., 2018a). The
emergence of a dominant hydraulic trade-off axis on the drought
plot compared to a carbon production-allocation axis on the con-
trol plot may suggest a shift in which species may successfully
compete in the long-term under conditions characterised by
greater hydraulic stress and greater light availability.

Our data also support a strong shift in the seasonal controls on
growth rates from the dry to wet season in the drought stressed
trees, which is absent from the control trees. Within the dry sea-
son, growth rates were more strongly related to maximum photo-
synthetic capacities, DBH and plant respiration, whereas in the
wet season plant hydraulic traits, stem and leaf respiration rates,
tree size and light condition all had significant correlations with
growth rates (Table 2). This suggests that drought not only shifts
the controls on mean growth rates relative to the control plot, it

also drives considerable changes in what limits dry season and
wet season growth rates. We note that due to the number of tests
performed (114, Table 2) it is possible that some of our signifi-
cant trait correlations are false positives.

The role of taxonomy in explaining growth

Our results indicate no strong link between taxonomy and
growth. Instead, they suggest that DBH and/or tree light avail-
ability were better direct or indirect predictors of growth, particu-
larly within the control plot (Table 2; Fig. 3). On the drought
plot however, there was no influence of light availability on
growth in the path model or in the bivariate correlations; it was
found to be correlated only with wet season growth rates. This
may reflect either the overall increase in light availability though
the canopy, as a consequence of prior drought-induced mortality,
or the relevance of traits that vary more with tree size than light
in the growth of the drought stressed trees.

In summary, we demonstrate that the traits which control
growth rates within a common group of tree species change
when trees are exposed to a long-term (decadal) change in cli-
mate. Principally, we demonstrate a shift from growth being
controlled by traits solely related to carbon cycling (assimilation
and respiration) in well-watered trees to traits relating to a tree’s
capacity to take hydraulic risks under drought conditions. Criti-
cally, we find that commonly measured traits such as leaf mass
per area (LMA) and woody tissue density (q) cannot predict
growth rates in a tropical forest. However, we note that despite
demonstrating the significant shift to an embolism-resistance to
growth trade-off under drought conditions, our study highlights
the fact that considerable uncertainty still remains concerning
how plant function controls growth and across what time-scales
this can change.

Acknowledgements

This work is a product of a UK NERC independent fellowship
grant NE/N014022/1 to LR. It was also supported by a UK
NERC grant NE/J011002/1 and EU FP7-Amazalert to PM to
PM and MM, CNPQ grant 457914/2013-0/MCTI/CNPq/
FNDCT/LBA/ESECAFLOR to ACLD, and an ARC grant
DP170104091 to PM and FAPESP/Microsoft research (grant
11/52072-0) awarded to RSO. We also thank the UNICAMP
postgraduate program in Ecology and Plant Biology and the
Brazilian Higher Education Co-ordination Agency (CAPES) for
scholarships to PBC, PBC and ALG. We are also very grateful to
the journal editor and three reviewers who substantially improved
the quality of this work.

Author contributions

LR collected and compiled the data alongside PRLB, ALG, IC,
PBC, LVF, SSV, AARO, JASJ and ACLdC. LR designed the
study with MM, ACLsC, PM, TD and RO. LR and MM per-
formed the statistical analysis and wrote the paper; all other
authors substantially contributed to revisions.

� 2020 The Authors

New Phytologist�2020 New Phytologist Trust
New Phytologist (2020)

www.newphytologist.com

New
Phytologist Research 9



ORCID

Patrick Meir https://orcid.org/0000-0002-2362-0398
Maurizio Mencuccini https://orcid.org/0000-0003-0840-
1477
Rafael S. Oliveira https://orcid.org/0000-0002-6392-2526
Lucy Rowland https://orcid.org/0000-0002-0774-3216

References

Adler PB, Salguero-Gomez R, Compagnoni A, Hsu JS, Ray-Mukherjee J,

Mbeau-Ache C, Franco M. 2014. Functional traits explain variation in plant

life history strategies. Proceedings of the National Academy of Sciences, USA 111:

740–745.
Allison PD. 2012.Handling missing data by maximum likelihood. SAS GLobal
Forum, Statistics and Data Analysis 312–2012.

Anderegg LDL, Berner LT, Badgley G, Sethi ML, Law BE, HilleRisLambers J.

2018.Within-species patterns challenge our understanding of the leaf

economics spectrum. Ecology Letters 21: 734–744.
Aubrey DP, Teskey RO. 2009. Root-derived CO2 efflux via xylem stream rivals

soil CO2 efflux. New Phytologist 184: 35–40.
Bartlett MK, Klein T, Jansen S, Choat B, Sack L. 2016. The correlations and

sequence of plant stomatal, hydraulic, and wilting responses to drought.

Proceedings of the National Academy of Sciences, USA 113: 13098–13103.
Bates D, Machler M, Bolker BM, Walker SC. 2015. Fitting linear mixed-effects

models using lme4. Journal of Statistical Software 67: 1–48.
Bittencourt PRL, Oliveira RS, da Costa ACL, Giles AL, Coughlin I, Costa PB,

Bartholomew DC, Ferreira LV, Vasconcelos SS, Barros FV et al. 2020.
Amazonian trees have limited capacity to acclimate plant hydraulic properties

in response to long-term drought. Global Change Biology 26: 3569–3584.
Brown TA. 2006. Confirmatory factor analysis for applied research. New York:

Guilford Press.

Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009.

Towards a worldwide wood economics spectrum. Ecology Letters 12: 351–366.
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ,

Feild TS, Gleason SM, Hacke UG et al. 2012. Global convergence in the

vulnerability of forests to drought. Nature 491: 752–755.
Christoffersen BO, Gloor M, Fauset S, Fyllas NM, Galbraith DR, Baker TR,

Kruijt B, Rowland L, Fisher RA, Binks OJ et al. 2016. Linking hydraulic traits
to tropical forest function in a size-structured and trait-driven model (TFS vol

1-Hydro). Geoscientific Model Development 9: 4227–4255.
da Costa ACL, Galbraith D, Almeida S, Portela BTT, da Costa M, Silva JD,

Braga AP, de Goncalves PHL, de Oliveira AAR, Fisher R et al. 2010. Effect of
7 yr of experimental drought on vegetation dynamics and biomass storage of an

eastern Amazonian rainforest. New Phytologist 187: 579–591.
Diaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer

M, Wirth C, Prentice IC et al. 2016. The global spectrum of plant form and

function. Nature 529: 167–171.
Duffy PB, Brando P, Asner GP, Field CB. 2015. Projections of future

meteorological drought and wet periods in the Amazon. Proceedings of the
National Academy of Sciences, USA 112: 13172–13177.

Eller CB, Barros FD, Bittencourt PRL, Rowland L, Mencuccini M, Oliveira RS.

2018a. Xylem hydraulic safety and construction costs determine tropical tree

growth. Plant, Cell & Environment 41: 548–562.
Eller CB, Rowland L, Oliveira RS, Bittencourt PRL, Barros FV, da Costa ACL,

Meir P, Friend AD, Mencuccini M, Sitch S et al. 2018b.Modelling tropical

forest responses to drought and El Nino with a stomatal optimization model

based on xylem hydraulics. Philosophical Transactions of the Royal Society B:
Biological Sciences 373: 20170315.

Enders C, Bandalos D. 2001. The relative performance of full information

maximum likelihood estimation for missing data in structural equation models.

Structural Equation Modeling: A Multidisciplinary Journal 8: 430–457.
Estiarte M, Vicca S, Penuelas J, Bahn M, Beier C, Emmett BA, Fay PA, Hanson

PJ, Hasibeder R, Kigel J et al. 2016. Few multiyear precipitation-reduction

experiments find a shift in the productivity–precipitation relationship. Global
Change Biology 22: 2570–2581.

Falster DS, Duursma RA, FitzJohn RG. 2018.How functional traits influence

plant growth and shade tolerance across the life cycle. Proceedings of the
National Academy of Sciences, USA 115, E6789–E6798.

Falster DS, Westoby M. 2005. Alternative height strategies among 45 dicot rain

forest species from tropical Queensland, Australia. Journal of Ecology 93: 521–
535.

Fisher RA, Muszala S, Verteinstein M, Lawrence P, Xu C, McDowell NG, Knox

RG, Koven C, Holm J, Rogers BM et al. 2015. Taking off the training wheels:
the properties of a dynamic vegetation model without climate envelopes,

CLM4.5(ED). Geoscientific Model Development 8: 3593–3619.
Fisher RA, Williams M, Do Vale RL, Da Costa AL, Meir P. 2006. Evidence

from Amazonian forests is consistent with isohydric control of leaf water

potential. Plant, Cell & Environment 29: 151–165.
Fyllas NM, Bentley LP, Shenkin A, Asner GP, Atkin OK, Diaz S, Enquist BJ,

Farfan-Rios W, Gloor E, Guerrieri R et al. 2017. Solar radiation and

functional traits explain the decline of forest primary productivity along a

tropical elevation gradient. Ecology Letters 20: 730–740.
Fyllas NM, Gloor E, Mercado LM, Sitch S, Quesada CA, Domingues TF,

Galbraith DR, Torre-Lezama A, Vilanova E, Ramirez-Angulo H et al. 2014.
Analysing Amazonian forest productivity using a new individual and trait-based

model (TFS vol 1). Geoscientific Model Development 7: 1251–1269.
Gibert A, Gray EF, Westoby M, Wright IJ, Falster DS, Wilson S. 2016.On the

link between functional traits and growth rate: meta-analysis shows effects

change with plant size, as predicted. Journal of Ecology 104: 1488–1503.
Grace JB, Anderson TM, Olff H, Scheiner SM. 2010.On the specification of

structural equation models for ecological systems. Ecological Monographs 80:
67–87.

Grace JB, Schoolmaster DR, Guntenspergen GR, Little AM, Mitchell BR,

Miller KM, Schweiger EW. 2012. Guidelines for a graph-theoretic

implementation of structural equation modeling. Ecosphere 3: 1–44.
Grime JP. 1998. Benefits of plant diversity to ecosystems: immediate, filter and

founder effects. Journal of Ecology 86: 902–910.
Harper AB, Cox PM, Friedlingstein P, Wiltshire AJ, Jones CD, Sitch S,

Mercado LM, Groenendijk M, Robertson E, Kattge J et al. 2016. Improved

representation of plant functional types and physiology in the Joint UK Land

Environment Simulator (JULES v4.2) using plant trait information.

Geoscientific Model Development 9: 2415–2440.
Hubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cun�ı-Sanchez
A, Daniels AK, Ewango CEN, Fauset S, Mukinzi JM et al. 2020.
Asynchronous carbon sink saturation in African and Amazonian tropical

forests. Nature 579: 80–87.
IPCC. 2019. Land–climate interactions. In: Shukla PR, Skea J, Calvo Buendia E,

Masson-Delmotte V, P€ortner H-O, Roberts DC, Zhai P, Slade R, Connors S.

et al., eds. Climate Change and Land: an IPCC special report on climate change,
desertification, land degradation, sustainable land management, food security, and
greenhouse gas fluxes in terrestrial ecosystems. Geneva, Switzerland: IPCC.

Jung M, Reichstein M, Schwalm CR, Huntingford C, Sitch S, Ahlstrom A,

Arneth A, Camps-Valls G, Ciais P, Friedlingstein P et al. 2017.
Compensatory water effects link yearly global land CO2 sink changes to

temperature. Nature 541: 516–520.
Kattge J, Diaz S, Lavorel S, Prentice C, Leadley P, Bonisch G, Garnier E,

Westoby M, Reich PB, Wright IJ et al. 2011. TRY – a global database of plant
traits. Global Change Biology 17: 2905–2935.

Kennedy D, Swenson S, Oleson KW, Lawrence DM, Fisher R, da Costa ACL,

Gentine P. 2019. Implementing plant hydraulics in the community land

model, version 5. Journal of Advances in Modeling Earth Systems 11: 485–513.
Koch AL. 1966. The logarithm in biology 1. Mechanisms generating the log-

normal distribution exactly. Journal of Theoretical Biology 12: 276–290.
Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC,

Poorter L, VanderwelM, Vieilledent G,Wright SJ et al. 2016. Plant functional
traits have globally consistent effects on competition.Nature 529: 204–207.

Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. lmerTest Package: tests

in linear mixed effects models. Journal of Statistical Software 82: 1–26.
Lehnebach R, Bossu J, Va S, Morel H, Amusant N, Nicolini E, Beauchêne J.
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