62 research outputs found

    The Unfolded Protein Response: A Key Player in Zika Virus-Associated Congenital Microcephaly

    Get PDF
    Zika virus (ZIKV) is a mosquito-borne virus that belongs to the Flaviviridae family, together with dengue, yellow fever, and West Nile viruses. In the wake of its emergence in the French Polynesia and in the Americas, ZIKV has been shown to cause congenital microcephaly. It is the first arbovirus which has been proven to be teratogenic and sexually transmissible. Confronted with this major public health challenge, the scientific and medical communities teamed up to precisely characterize the clinical features of congenital ZIKV syndrome and its underlying pathophysiological mechanisms. This review focuses on the critical impact of the unfolded protein response (UPR) on ZIKV-associated congenital microcephaly. ZIKV infection of cortical neuron progenitors leads to high endoplasmic reticulum (ER) stress. This results in both the stalling of indirect neurogenesis, and UPR-dependent neuronal apoptotic death, and leads to cortical microcephaly. In line with these results, the administration of molecules inhibiting UPR prevents ZIKV-induced cortical microcephaly. The discovery of the link between ZIKV infection and UPR activation has a broader relevance, since this pathway plays a crucial role in many distinct cellular processes and its induction by ZIKV may account for several reported ZIKV-associated defects

    Expression of Mutated Poliovirus Receptors in Human Neuroblastoma Cells Persistently Infected with Poliovirus

    Get PDF
    AbstractPoliovirus (PV) is able to establish persistent infections in human neuroblastoma IMR-32 cells [Colbère-Garapin et al. (1989) Proc. Natl. Acad. Sci. USA 86, 7590]. During persistent infection, PV mutants are selected that display substitutions of residues in regions of the capsid known to interact with the PV receptor (PVR), a glycoprotein of the immunoglobulin superfamily. The mechanism of persistent infection in IMR-32 cells may therefore involve the selection of mutant PVRs. To test this hypothesis, the sequences of the PVR mRNAs in uninfected IMR-32 cells and in two independent IMR-32 cell cultures persistently infected with the Mahoney strain of PV type 1 (PV1/Mahoney) were determined. The PVR mRNA population of uninfected cells was homogeneous, and no mutation was repeatedly found, whereas that of persistently infected cells displayed missense mutations. Particular mutations were repeatedly detected, and all of them mapped to the N-terminal domain of PVR (domain 1), which interacts directly with PV. These mutations generated several types of PVR variants with the following substitutions: Ala67→Thr alone, Ala67→Thr associated with Gly39→Ser, and Arg104→Gln. Functional analysis of PVR in murine LM cells, stably expressing each of the PVR forms, showed that the PVR forms selected during persistent infection conferred on LM cells partial resistance to PV1/Mahoney-induced lysis. Although adsorption onto PVR seemed to be independent of the PVR form, an analysis of the conformational changes of the capsid during the early steps of the PV cycle provided evidence that the Ser39/Thr67 and Gln104 substitutions almost halved the conversion of 160S infectious particles into 135S A particles associated with the PV–PVR interaction. Altogether, these findings indicate that during persistent infection, specific mutations were selected in the domain 1 of PVR and that these mutations increased the resistance of cells to PV-induced lysis. These results are discussed in view of the position of the mutations on PVR

    Novel Host-Guest Structures of 2,4,6- Tris (4-Halophenoxy)-1,3,5-Triazines(XPOT): Inclusion of C60 and Pyridine

    Get PDF
    The crystal structures of two halophenoxytriazine host-guest compounds are reported and discussed. They feature inclusion of C60 into cages of 2,4,6-tris(4-iodophenoxy)-1,3,5-triazine [IPOT, hexagonal, P63/m, a=16.367(2)Å, c=20.661(4)Å, V=4793.1(13)Å3, Z=2] and of pyridine6-clusters into cages of 2,4,6-tris(4-bromophenoxy)-1,3,5-triazine (BrPOT, rhombohedral, R 3ˉ \bar{3} , a=15.5186(8)Å, c=39.521(3)Å, V=8242.7(8)Å3, Z=6). The stackings of the threefold symmetric layers of XPOT host molecules are different from each other and from those of all previously reported XPOT inclusion compounds (X: Cl, Br, I). Graphical Abstract: The new compounds IPOT3·C60 and BrPOT2·py3, represent new packing types in the family of threefold symmetric XPOT inclusion compounds (XPOT=2,4,6-tris(4-halophenoxy)-1,3,5-triazine; X=Cl, Br, I

    A Mouse Model for Chikungunya: Young Age and Inefficient Type-I Interferon Signaling Are Risk Factors for Severe Disease

    Get PDF
    Chikungunya virus (CHIKV) is a re-emerging arbovirus responsible for a massive outbreak currently afflicting the Indian Ocean region and India. Infection from CHIKV typically induces a mild disease in humans, characterized by fever, myalgia, arthralgia, and rash. Cases of severe CHIKV infection involving the central nervous system (CNS) have recently been described in neonates as well as in adults with underlying conditions. The pathophysiology of CHIKV infection and the basis for disease severity are unknown. To address these critical issues, we have developed an animal model of CHIKV infection. We show here that whereas wild type (WT) adult mice are resistant to CHIKV infection, WT mouse neonates are susceptible and neonatal disease severity is age-dependent. Adult mice with a partially (IFN-α/βR+/−) or totally (IFN-α/βR−/−) abrogated type-I IFN pathway develop a mild or severe infection, respectively. In mice with a mild infection, after a burst of viral replication in the liver, CHIKV primarily targets muscle, joint, and skin fibroblasts, a cell and tissue tropism similar to that observed in biopsy samples of CHIKV-infected humans. In case of severe infections, CHIKV also disseminates to other tissues including the CNS, where it specifically targets the choroid plexuses and the leptomeninges. Together, these data indicate that CHIKV-associated symptoms match viral tissue and cell tropisms, and demonstrate that the fibroblast is a predominant target cell of CHIKV. These data also identify the neonatal phase and inefficient type-I IFN signaling as risk factors for severe CHIKV-associated disease. The development of a permissive small animal model will expedite the testing of future vaccines and therapeutic candidates

    Type I IFN controls chikungunya virus via its action on nonhematopoietic cells

    Get PDF
    Chikungunya virus (CHIKV) is the causative agent of an outbreak that began in La Réunion in 2005 and remains a major public health concern in India, Southeast Asia, and southern Europe. CHIKV is transmitted to humans by mosquitoes and the associated disease is characterized by fever, myalgia, arthralgia, and rash. As viral load in infected patients declines before the appearance of neutralizing antibodies, we studied the role of type I interferon (IFN) in CHIKV pathogenesis. Based on human studies and mouse experimentation, we show that CHIKV does not directly stimulate type I IFN production in immune cells. Instead, infected nonhematopoietic cells sense viral RNA in a Cardif-dependent manner and participate in the control of infection through their production of type I IFNs. Although the Cardif signaling pathway contributes to the immune response, we also find evidence for a MyD88-dependent sensor that is critical for preventing viral dissemination. Moreover, we demonstrate that IFN-α/β receptor (IFNAR) expression is required in the periphery but not on immune cells, as IFNAR−/−→WT bone marrow chimeras are capable of clearing the infection, whereas WT→IFNAR−/− chimeras succumb. This study defines an essential role for type I IFN, produced via cooperation between multiple host sensors and acting directly on nonhematopoietic cells, in the control of CHIKV

    Induction of GADD34 Is Necessary for dsRNA-Dependent Interferon-β Production and Participates in the Control of Chikungunya Virus Infection

    Get PDF
    Nucleic acid sensing by cells is a key feature of antiviral responses, which generally result in type-I Interferon production and tissue protection. However, detection of double-stranded RNAs in virus-infected cells promotes two concomitant and apparently conflicting events. The dsRNA-dependent protein kinase (PKR) phosphorylates translation initiation factor 2-alpha (eIF2α) and inhibits protein synthesis, whereas cytosolic DExD/H box RNA helicases induce expression of type I-IFN and other cytokines. We demonstrate that the phosphatase-1 cofactor, growth arrest and DNA damage-inducible protein 34 (GADD34/Ppp1r15a), an important component of the unfolded protein response (UPR), is absolutely required for type I-IFN and IL-6 production by mouse embryonic fibroblasts (MEFs) in response to dsRNA. GADD34 expression in MEFs is dependent on PKR activation, linking cytosolic microbial sensing with the ATF4 branch of the UPR. The importance of this link for anti-viral immunity is underlined by the extreme susceptibility of GADD34-deficient fibroblasts and neonate mice to Chikungunya virus infection

    Chikungunya virus pathogenesis: From bedside to bench.

    Get PDF
    International audienceChikungunya virus (CHIKV) is an arbovirus transmitted to humans by mosquito bite. A decade ago, the virus caused a major outbreak in the islands of the Indian Ocean, then reached India and Southeast Asia. More recently, CHIKV has emerged in the Americas, first reaching the Caribbean and now extending to Central, South and North America. It is therefore considered a major public health and economic threat. CHIKV causes febrile illness typically associated with debilitating joint pains. In rare cases, it may also cause central nervous system disease, notably in neonates. Joint symptoms may persist for months to years, and lead to arthritis. This review focuses on the spectrum of signs and symptoms associated with CHIKV infection in humans. It also illustrates how the analysis of clinical and biological data from human cohorts and the development of animal and cellular models of infection has helped to identify the tissue and cell tropisms of the virus and to decipher host responses in benign, severe or persistent disease. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World"

    Rôle des récepteurs humains de l'autophagie, p62 et NDP52, dans l'infection par le virus Chikungunya

    No full text
    Le virus Chikungunya (CHIKV) est un arbovirus qui est aujourd'hui considéré comme un virus présentant un risque d'émergence majeur, du fait de la distribution géographique des moustiques vecteurs de ce virus. La biologie cellulaire de l'infection par le CHIKV étant encore mal connue, nous avons étudié le rôle d'un processus cellulaire fondamental pour la survie cellulaire, l'autophagie, au cours de l'infection par le CHIKV. Nous avons d'abord montré que le CHIKV induit l'autophagie in vitro et in vivo, puis nous avons analysé en détail le rôle de deux récepteurs de l'autophagie, p62 et NDP52, au cours de l'infection dans les cellules humaines. Ces récepteurs limitent la mort cellulaire induite par le virus mais jouent des rôles distincts sur la replication virale. p62 cible la protéine de capside ubiquitinylée et conduit à sa dégradation dans les autophagolysosomes, protégeant les cellules infectées de la mort due à la cytotoxicité de la capside. Contrairement à NDP52 murin, NDP52 humain (hNDP52) lie directement nsP2, une protéine virale non structurale impliquée dans la replication de TARN viral. L'interaction hNDP52-nsP2 est nécessaire à la formation des usines virales et favorise la replication virale. De plus, cette interaction protège les cellules infectées de la mort en permettant le titrage de nsP2 hors du noyau, limitant ainsi la mort due au shutoff induit par nsP2. Notre étude révèle que des récepteurs clés de l'autophagie, p62 et NDP52, jouent des rôles distincts et complémentaires au cours de l'infection par le CHIKV dans des cellules humaines, en modulant la replication virale et en protégeant les cellules de la mort induite par le CHIKV.Chikungunya (CHIKV) is an arbovirus transmitted to human by mosquitoes. CHIKV is now regarded as the arbovirus most likely to spread globally, given the wide distribution of its mosquito vector. Because cell biology of infection with CHIKV was critically lacking, we have investigated the role of autophagy on CHIKV replication. We have shown that CHIKV infection induces autophagy in vitro and in vivo then we have studied in detail the role of two autophagy receptors, p62 and NDP52, on viral infection in human cells. We have shown that both receptors limit virus-induced cell death although they play distinct roles on viral replication. p62 slightly restricts viral replication and targets ubiquitinated CHIKV cytotoxic capsid to autophagolysosomal degradation, restricting CHIKV-infected cells from death. Human NDP52 (hNDP52), in contrast to murine NDP52, directly binds nsP2, a non-structural viral protein required for viral RNA replication. hNDP52-nsP2 interaction is implicated in the formation of viral factories and promotes viral replication. Furthermore hNDP52 restricts the amount of nsP2 in the nucleus such as host cell shutoff is limited and infected cells protected from virus-induced cell death. Our study show that key autophagy receptors, p62 and NDP52, prevent CHIKV-induced cell death and modulate viral replication, a process that relies on distinct and complementary roles for p62 and hNDP52 in human cells.PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF
    corecore