73 research outputs found

    Horizon scanning of potential threats to high-Arctic biodiversity, human health and the economy from marine invasive alien species: A Svalbard case study

    Get PDF
    The high Arctic is considered a pristine environment compared with many other regions in the northern hemisphere. It is becoming increasingly vulnerable to invasion by invasive alien species (IAS), however, as climate change leads to rapid loss of sea ice, changes in ocean temperature and salinity, and enhanced human activities. These changes are likely to increase the incidence of arrival and the potential for establishment of IAS in the region. To predict the impact of IAS, a group of experts in taxonomy, invasion biology and Arctic ecology carried out a horizon scanning exercise using the Svalbard archipelago as a case study, to identify the species that present the highest risk to biodiversity, human health and the economy within the next 10 years. A total of 114 species, currently absent from Svalbard, recorded once and/or identified only from environmental DNA samples, were initially identified as relevant for review. Seven species were found to present a high invasion risk and to potentially cause a significant negative impact on biodiversity and five species had the potential to have an economic impact on Svalbard. Decapod crabs, ascidians and barnacles dominated the list of highest risk marine IAS. Potential pathways of invasion were also researched, the most common were found associated with vessel traffic. We recommend (i) use of this approach as a key tool within the application of biosecurity measures in the wider high Arctic, (ii) the addition of this tool to early warning systems for strengthening existing surveillance measures; and (iii) that this approach is used to identify high-risk terrestrial and freshwater IAS to understand the overall threat facing the high Arctic. Without the application of biosecurity measures, including horizon scanning, there is a greater risk that marine IAS invasions will increase, leading to unforeseen changes in the environment and economy of the high Arctic

    State of knowledge regarding the potential of macroalgae cultivation in providing climate-related and other ecosystem services

    Get PDF
    Macroalgae (or seaweed) aquaculture can potentially provide many ecosystem services, including climate change mitigation, coastal protection, preservation of biodiversity and improvement of water quality. Nevertheless, there are still many constraints and knowledge gaps that need to be overcome, as well as potential negative impacts or scale-dependent effects that need to be considered, before macroalgae cultivation in Europe can be scaled up successfully and sustainably. To investigate these uncertainties, the Expert Working Group (EWG) on Macroalgae was established. Its role was to determine the state of knowledge regarding the potential of macroalgae culture in providing climate-related and other ecosystem services (ES) and to identify specific knowledge gaps that must be addressed before harvesting this potential. The methodological framework combined a multiple expert consultation with Delphi process and a Quick Scoping Review (QSR). To analyse the outcome of both approaches, the EWG classified the findings under the categories Political, Environmental, Social, Technical, Economic and Legal (PESTEL approach) and categorised the ES based on the CICES 5.1 classification. Although representative stakeholders from many different disciplines were contacted, the majority of responses to the Delphi process were from representatives of academia or research. While the results of each method differed in many ways, both methods identified the following top six ecosystem services provided by seaweed cultivation: i) provisioning food, ii) provisioning hydrocolloids and feed, iii) regulating water quality, iv) provisioning habitats, v) provisioning of nurseries and vi) regulating climate. Diverse technological knowledge gaps were identified by both methods at all scales of the macroalgae cultivation process, followed by economic and environmental knowledge gaps depending on the method used. Based on suggestions from the expert respondents in the Delphi process, there is a clear need for an European-wide strategy for reducing risks for seaweed producers, providing clear standards and guidelines for obtaining permits, and providing financial support to improve technological innovation, that will ensure consistent quality. Legal (e.g., safety regulations), economic (e.g., lack of demand for seaweeds in many countries) and technological (e.g., production at large scale) constraints represented almost 70% of the total responses in the Delphi process, whereas environmental and technical constraints were more dominant in the literature. The most commonly identified potential negative impacts of macroalgae cultivation both among the expert responses and the reviewed articles were unknown environmental impacts, e.g. to deep sea, benthic and pelagic ecosystems. The present study provides an assessment of the state of knowledge regarding ES provided by seaweed cultivation and identifies the associated knowledge gaps, constraints and potential negative impacts. One of the main hurdles recognised by the EWG was the understanding of ES themselves by the different stakeholders, as well as the issue of scale. Studies providing clear evidence of ES provided by seaweed cultivation and/or valorisation of these services were lacking in the literature, and some aspects, like cultural impact etc. were missing in the responses to the questionnaires during the Delphi process. The issue of scale and scaling-up was omnipresent both in assessing the ES provided by seaweed cultivation and in identifying knowledge gaps, constraints and potential negative impacts. For example, the ES provided will depend on the scale of cultivation, the main technological knowledge gaps were often related to scale of cultivation. Likewise at a large scale of operations, there could be multiple associated potential side effects, which need to be further investigated. Based on the outcomes of this investigation, we provide an outlook with open questions that need to be answered to support the sustainable scaling-up of seaweed cultivation in Europe

    Can a key boreal Calanus copepod species now complete its life-cycle in the Arctic? Evidence and implications for Arctic food-webs

    Get PDF
    The changing Arctic environment is affecting zooplankton that support its abundant wildlife. We examined how these changes are influencing a key zooplankton species, Calanus finmarchicus, principally found in the North Atlantic but expatriated to the Arctic. Close to the ice-edge in the Fram Strait, we identified areas that, since the 1980s, are increasingly favourable to C. finmarchicus. Field-sampling revealed part of the population there to be capable of amassing enough reserves to overwinter. Early developmental stages were also present in early summer, suggesting successful local recruitment. This extension to suitable C. finmarchicus habitat is most likely facilitated by the long-term retreat of the ice-edge, allowing phytoplankton to bloom earlier and for longer and through higher temperatures increasing copepod developmental rates. The increased capacity for this species to complete its life-cycle and prosper in the Fram Strait can change community structure, with large consequences to regional food-webs

    Invasive non‐native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region

    Get PDF
    The Antarctic is considered to be a pristine environment relative to other regions of the Earth, but it is increasingly vulnerable to invasions by marine, freshwater and terrestrial non‐native species. The Antarctic Peninsula region (APR), which encompasses the Antarctic Peninsula, South Shetland Islands and South Orkney Islands, is by far the most invaded part of the Antarctica continent. The risk of introduction of invasive non‐native species to the APR is likely to increase with predicted increases in the intensity, diversity and distribution of human activities. Parties that are signatories to the Antarctic Treaty have called for regional assessments of non‐native species risk. In response, taxonomic and Antarctic experts undertook a horizon scanning exercise using expert opinion and consensus approaches to identify the species that are likely to present the highest risk to biodiversity and ecosystems within the APR over the next 10 years. One hundred and three species, currently absent in the APR, were identified as relevant for review, with 13 species identified as presenting a high risk of invading the APR. Marine invertebrates dominated the list of highest risk species, with flowering plants and terrestrial invertebrates also represented; however, vertebrate species were thought unlikely to establish in the APR within the 10 year timeframe. We recommend (a) the further development and application of biosecurity measures by all stakeholders active in the APR, including surveillance for species such as those identified during this horizon scanning exercise, and (b) use of this methodology across the other regions of Antarctica. Without the application of appropriate biosecurity measures, rates of introductions and invasions within the APR are likely to increase, resulting in negative consequences for the biodiversity of the whole continent, as introduced species establish and spread further due to climate change and increasing human activity

    Transcriptional profiling of the acute pulmonary inflammatory response induced by LPS: role of neutrophils

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung cancer often develops in association with chronic pulmonary inflammatory diseases with an influx of neutrophils. More detailed information on inflammatory pathways and the role of neutrophils herein is a prerequisite for understanding the mechanism of inflammation associated cancer.</p> <p>Methods</p> <p>In the present study, we used microarrays in order to obtain a global view of the transcriptional responses of the lung to LPS in mice, which mimics an acute lung inflammation. To investigate the influence of neutrophils in this process, we depleted mice from circulating neutrophils by treatment with anti-PMN antibodies prior to LPS exposure.</p> <p>Results</p> <p>A total of 514 genes was greater than 1.5-fold differentially expressed in the LPS induced lung inflammation model. 394 of the 514 were up regulated genes mostly involved in cell cycle and immune/inflammation related processes, such as cytokine/chemokine activity and signalling. Down regulated genes represented nonimmune processes, such as development, metabolism and transport. Notably, the number of genes and pathways that were differentially expressed, was reduced when animals were depleted from circulating neutrophils, confirming the central role of neutrophils in the inflammatory response. Furthermore, there was a significant correlation between the differentially expressed gene list and the promutagenic DNA lesion M<sub>1</sub>dG, suggesting that it is the extent of the immune response which drives genetic instability in the inflamed lung. Several genes that were specifically regulated by the presence of activated neutrophils could be identified and these were mostly involved in interferon signalling, oxidative stress response and cell cycle progression. The latter possibly refers to a higher rate of cell turnover in the inflamed lung with neutrophils, suggesting that the neutrophil influx is associated with a higher risk for the accumulation and fixation of mutations.</p> <p>Conclusion</p> <p>Gene expression profiling identified specific genes and pathways that are related to neutrophilic inflammation and could be associated to cancer development and indicate an active role of neutrophils in mediating the LPS induced inflammatory response in the mouse lung.</p

    Consistency of impact assessment protocols for non-native species

    Get PDF
    Standardized tools are needed to identify and prioritize the most harmful non-native species (NNS). A plethora of assessment protocols have been developed to evaluate the current and potential impacts of non-native species, but consistency among them has received limited attention. To estimate the consistency across impact assessment protocols, 89 specialists in biological invasions used 11 protocols to screen 57 NNS (2614 assessments). We tested if the consistency in the impact scoring across assessors, quantified as the coefficient of variation (CV), was dependent on the characteristics of the protocol, the taxonomic group and the expertise of the assessor. Mean CV across assessors was 40%, with a maximum of 223%. CV was lower for protocols with a low number of score levels, which demanded high levels of expertise, and when the assessors had greater expertise on the assessed species. The similarity among protocols with respect to the final scores was higher when the protocols considered the same impact types. We conclude that all protocols led to considerable inconsistency among assessors. In order to improve consistency, we highlight the importance of selecting assessors with high expertise, providing clear guidelines and adequate training but also deriving final decisions collaboratively by consensus

    Psammechinus miliaris

    No full text
    Psammechinus miliaris occurs in a diverse range of habitats, frequently at high densities, particularly in shallow or littoral locations. There is now a significant body of literature examining its reproduction, diet, trophic ecology, and biochemical gonad deposition. Hence, the species lends itself well as a model to better understand a variety of processes of the inshore ecosystem. Its omnivory is well documented, comprising a diet rich in encrusting invertebrates which support high gonad indices. It is likely the grazing activity of P. miliaris has a profound impact on the biodiversity and distribution of subtidal and intertidal encrusting communities. This species shows phenotypic plasticity in response to changes in diet and environmental conditions. This is relevant to our wider understanding of how sea urchins persist through ecosystem phase shifts from macroalgal-dominated communities to urchin barrens. The fate of ingested carotenoid pigments and their transformation and expression as gonad color have been investigated furthering the commercial potential for P. miliaris. As it is relatively robust in culture, P. miliaris is increasingly used as a model for the study of developmental embryology, the impact of climate change, and environmental pollutants
    • 

    corecore