17 research outputs found

    Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications

    Get PDF
    Iron oxide nanoparticles (IONPs) are well-known contrast agents for MRI for a wide range of sizes and shapes. Their use as theranostic agents requires a better understanding of their magnetic hyperthermia properties and also the design of a biocompatible coating ensuring their stealth and a good biodistribution to allow targeting of specific diseases. Here, biocompatible IONPs of two different shapes (spherical and octopod) were designed and tested in vitro and in vivo to evaluate their abilities as high-end theranostic agents. IONPs featured a dendron coating that was shown to provide anti-fouling properties and a small hydrodynamic size favoring an in vivo circulation of the dendronized IONPs. While dendronized nanospheres of about 22 nm size revealed good combined theranostic properties (r2 = 303 mM s−1, SAR = 395 W gFe−1), octopods with a mean size of 18 nm displayed unprecedented characteristics to simultaneously act as MRI contrast agents and magnetic hyperthermia agents (r2 = 405 mM s−1, SAR = 950 W gFe−1). The extensive structural and magnetic characterization of the two dendronized IONPs reveals clear shape, surface and defect effects explaining their high performance. The octopods seem to induce unusual surface effects evidenced by different characterization techniques while the nanospheres show high internal defects favoring NĂ©el relaxation for magnetic hyperthermia. The study of octopods with different sizes showed that NĂ©el relaxation dominates at sizes below 20 nm while the Brownian one occurs at higher sizes. In vitro experiments demonstrated that the magnetic heating capability of octopods occurs especially at low frequencies. The coupling of a small amount of glucose on dendronized octopods succeeded in internalizing them and showing an effect of MH on tumor growth. All measurements evidenced a particular signature of octopods, which is attributed to higher anisotropy, surface effects and/or magnetic field inhomogeneity induced by tips. This approach aiming at an analysis of the structure–property relationships is important to design efficient theranostic nanoparticles.The Region Alsace, France, and the Labex Chimie des Systemes Complexes, University of Strasbourg, France are gratefully acknowledged for the doctoral fellowship to Geoffrey Cotin. This research project was also co-funded by Labex CSC, Alsace contre le cancer, INCA (project PRTK14, THERAMAG 2014-225) and the INTERREG project NANOTRANSMED. The “NANOTRANSMED” project is co-funded by the European Regional Development Fund (ERDF) and by the Swiss Confederation and the Swiss cantons of Aargau, Basel-Landschaft and Basel-Stadt, in the framework of the INTERREG V Upper Rhine program (“Transcending borders with every project”). The authors thank Morgane Rabineau for epifluorescence imaging and Nadia Messaddeq for TEM imaging of cells. The authors thank the Center for Microscopy and Molecular Imaging (CMMI, supported by the European Regional Development Fund and the Walloon Region). This work was supported by the Fond National de la Recherche Scientifique (FNRS), UIAP VII, ARC Programs of the French Community of Belgium and the Walloon region (Gadolymph and Holocancer programs). All the authors acknowledge the COST action TD1402 “RADIOMAG”. D. Ortega and F. J. Teran acknowledge support from the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (MINECO, Grant SEV-2016-0686), the Spanish Ministry of Economy and Competitiveness for the NANOLICO project (MAT2017-85617-R), the Spanish Ministry of Science through the NaNoCAR grant PID2020-117544RB-I00, the RamĂłn y Cajal grant RYC2018-025253-I and Research Networks grant RED2018-102626-T, the HEATOOLS project (BIO2017-84246-C2-1-R), the Comunidad de Madrid for grant NANOMAGCOST (P2018/NMT-4321), DGA for public funding from Fondo Social (grupos DGA), and the European Commission for the funding received through the H2020 “NoCanTher” project (GA No. 685795).Peer reviewe

    Nouvelles stratégies vers la synthÚse de nanoparticules magnétiques multifonctionnelles innovantes combinant imagerie par IRM et/ou thérapie par hyperthermie magnétique

    No full text
    Despite numerous advances in cancer treatment, new approaches are necessary in order to minimize the deleterious side effects and to increase patient’s survivals rate. Nowadays, many hopes rely on functionalized iron oxide nanoparticles (NPs) that combine, in a single nano-objects, diagnosis (MRI contrast agent) and magnetic hyperthermia therapy (i.e. “theranostic”). In this context, the strategy is to develop the synthesis of optimized magnetic properties NPs through the control of their size, shape, composition, biofunctionalization and the validation of their theranostic properties. A process of NPs engineering has been developed starting at the iron precursor synthesis and the fine study of its decomposition passing through the in situ formation of the NPs to their functionalization and the determination of their theranostic properties.Bien que de nombreux progrĂšs aient Ă©tĂ© rĂ©alisĂ©s dans le traitement du cancer, de nouvelles approches sont nĂ©cessaires afin de minimiser les effets secondaires dĂ©lĂ©tĂšres et d’augmenter le taux de survie des patients. Aujourd’hui de nombreux espoirs reposent sur l’utilisation de nanoparticules (NPs) d’oxyde de fer fonctionnalisĂ©es permettant de combiner, en un seul nano-objet, le diagnostic (agent de contraste en IRM) et la thĂ©rapie par hyperthermie magnĂ©tique (i.e. « theranostic »). Dans ce contexte, la stratĂ©gie dĂ©veloppĂ©e est la synthĂšse de NPs Ă  propriĂ©tĂ©s magnĂ©tiques optimisĂ©es par le contrĂŽle de leurs taille, forme et composition, leur biofonctionnalisation et la validation de leurs propriĂ©tĂ©s thĂ©ranostiques. Une dĂ©marche d’ingĂ©nierie des NPs a Ă©tĂ© mise en place allant de la synthĂšse du prĂ©curseur de fer et de l’étude fine de sa dĂ©composition en passant par l’étude in situ de la formation des NPs jusqu'Ă  leur fonctionnalisation et la dĂ©termination de leurs propriĂ©tĂ©s theranostiques

    Core-shell iron oxide@stellate mesoporous silica for combined nearinfrared photothermia and drug delivery : influence of pH and surface chemistry

    No full text
    International audienceThe chemical design of smart nanocarriers, providing in one nanoformulation combined anticancer therapies, still remains a challenge in the field of nanomedicine. Among nanomaterials, iron oxide-based coreshell nanostructures have been already studied for their intrinsic magnetic hyperthermia features that may be coupled with drug delivery. However, despite the great interest today for photo-induced hyperthermia, very few studies investigated the potential of such nanocarriers to combine photothermia and drug delivery. In this work, our aim was to design functional iron oxide@stellate mesoporous silica nanoparticles (denoted IO@STMS NPs) loaded with a drug and able to combine in a same formulation near infrared (NIR) light induced photothermia with antitumor drug release. Herein, the NIR photothermal properties (SAR, specific absorption rates) of such nanomaterials were quantified for the first time as a function of the laser power and the NP amount. Aside the response to NIR light, the conditions to obtain very high drug loading (drug payloads up to 91 wt%) of the model antitumor drug doxorubicin (DOX) were optimized by varying different parameters, such as the NP surface chemistry (BARE (Si-OH), aminopropylsiloxane (APTES) and isobutyramide (IBAM)) and the pH of the drug impregnation aqueous solution. The drug release study of these core-shell systems in the presence or absence of NIR light demonstrated that the DOX release efficiency is mainly influenced by two parameters: surface chemistry (BARE ≄ IBAM ≄ APTES) and pH (pH 5.5 ≄ pH 6.5 ≄ pH 7.5). Furthermore, the temperature profiles under NIR light are found similar and independent from the pH range, the surface chemistry and the cycle number. Hence, the combination of local photothermia with lysosomal-like pH induced drug delivery (up to 40% release of the loaded drug) with these nanostructures could open the way towards new drug delivery nanoplatforms for nanomedecine applications

    In situ liquid transmission electron microscopy reveals self-assembly-driven nucleation in radiolytic synthesis of iron oxide nanoparticles in organic media

    No full text
    International audienceWe have investigated the early stages of formation of iron oxide nanoparticles from iron stearate precursors in the presence of sodium stearate in an organic solvent by in situ liquid phase transmission electron microscopy (IL-TEM). Before nucleation, we have evidenced the spontaneous formation of vesicular assemblies made of iron polycation-based precursors sandwiched between stearate layers. Nucleation of iron oxide nanoparticles occurs within the walls of the vesicles, which subsequently collapse upon consumption of the iron precursors and growth of the nanoparticles. We then evidenced that fine control of the electron dose, and therefore of the local concentration of reactive iron species in the vicinity of the nuclei, enables controlling crystal growth and selecting the morphology of the resulting iron oxide nanoparticles. Such direct observation of the nucleation process templated by vesicular assemblies in a hydrophobic organic solvent sheds new light on the formation process of metal oxide nanoparticles and therefore opens ways for the synthesis of inorganic colloidal systems with tunable shape and size

    Orienting the Pore Morphology of Core-Shell Magnetic Mesoporous Silica with the Sol-Gel Temperature. Influence on MRI and Magnetic Hyperthermia Properties

    No full text
    The controlled design of robust, well reproducible, and functional nanomaterials made according to simple processes is of key importance to envision future applications. In the field of porous materials, tuning nanoparticle features such as specific area, pore size and morphology by adjusting simple parameters such as pH, temperature or solvent is highly needed. In this work, we address the tunable control of the pore morphology of mesoporous silica (MS) nanoparticles (NPs) with the sol-gel reaction temperature (Tsg). We show that the pore morphology of MS NPs alone or of MS shell covering iron oxide nanoparticles (IO NPs) can be easily tailored with Tsg orienting either towards stellar (ST) morphology (large radial pore of around 10 nm) below 80 °C or towards a worm-like (WL) morphology (small randomly oriented pores channel network, of 3–4 nm pore size) above 80 °C. The relaxometric and magnetothermal features of IO@STMS or IO@WLMS core shell NPs having respectively stellar or worm-like morphologies are compared and discussed to understand the role of the pore structure for MRI and magnetic hyperthermia applications

    MPI of SuperSPIO20-labeled ALS patient-derived, genome-edited iPSCs and iPSC-derived motor neurons

    No full text
    Genome-edited induced pluripotent stem cells (iPSCs), iPSC-derived neural precursor cells (NPCs) and iPSC-derived motorneurons (MNs) have shown considerable potential for neurorepair in transgenic amyotrophic lateral sclerosis (ALS) rodent models.When pursuing mutant gene-edited iPSC cell therapy in patients, it is highly desirable to have non-invasive imaging techniquesavailable that can report longitudinally on the fate of transplanted cells. With magnetic particle imaging (MPI), one can visualize andquantify the distribution of superparamagnetic iron oxide (SPIO)-labeled stem cells in the body. Here, we report an optimized magneticlabeling protocol for MPI tracking of gene-edited iPSCs and iPSC-derived MNs. We used SuperSPIO20Âź and ResovistÂź for celllabeling and found that the MPI performance of SuperSPIO20Âź is about 20% higher than that for ResovistÂź when it comes to imagingof labeled cells. Furthermore, we compared the detection sensitivity of MPI with T2-W MRI and concluded that MPI has at least10-fold higher sensitivity in cell detection

    Unravelling the Thermal Decomposition Parameters for The Synthesis of Anisotropic Iron Oxide Nanoparticles

    No full text
    International audienceIron oxide nanoparticles are widely used as a contrast agent in magnetic resonance imaging (MRI), and may be used as therapeutic agent for magnetic hyperthermia if they display in particular high magnetic anisotropy. Considering the effect of nanoparticles shape on anisotropy, a reproducible shape control of nanoparticles is a current synthesis challenge. By investigating reaction parameters, such as the iron precursor structure, its water content, but also the amount of the surfactant (sodium oleate) reported to control the shape, iron oxide nanoparticles with different shape and composition were obtained, in particular, iron oxide nanoplates. The effect of the surfactant coming from precursor was taking into account by using in house iron stearates bearing either two or three stearate chains and the negative effect of water on shape was confirmed by considering these precursors after their dehydration. Iron stearates with three chains in presence of a ratio sodium oleate/oleic acid 1:1 led mainly to nanocubes presenting a core-shell Fe 1−x O@Fe 3−x O 4 composition. Nanocubes with straight faces were only obtained with dehydrated precursors. Meanwhile, iron stearates with two chains led preferentially to the formation of nanoplates with a ratio sodium oleate/oleic acid 4:1. The rarely reported flat shape of the plates was confirmed with 3D transmission electronic microscopy (TEM) tomography. The investigation of the synthesis mechanisms confirmed the major role of chelating ligand and of the heating rate to drive the cubic shape of nanoparticles and showed that the nanoplate formation would depend mainly on the nucleation step and possibly on the presence of a given ratio of oleic acid and chelating ligand (oleate and/or stearate)

    Unravelling the Thermal Decomposition Parameters for The Synthesis of Anisotropic Iron Oxide Nanoparticles

    No full text
    International audienceIron oxide nanoparticles are widely used as a contrast agent in magnetic resonance imaging (MRI), and may be used as therapeutic agent for magnetic hyperthermia if they display in particular high magnetic anisotropy. Considering the effect of nanoparticles shape on anisotropy, a reproducible shape control of nanoparticles is a current synthesis challenge. By investigating reaction parameters, such as the iron precursor structure, its water content, but also the amount of the surfactant (sodium oleate) reported to control the shape, iron oxide nanoparticles with different shape and composition were obtained, in particular, iron oxide nanoplates. The effect of the surfactant coming from precursor was taking into account by using in house iron stearates bearing either two or three stearate chains and the negative effect of water on shape was confirmed by considering these precursors after their dehydration. Iron stearates with three chains in presence of a ratio sodium oleate/oleic acid 1:1 led mainly to nanocubes presenting a core-shell Fe 1−x O@Fe 3−x O 4 composition. Nanocubes with straight faces were only obtained with dehydrated precursors. Meanwhile, iron stearates with two chains led preferentially to the formation of nanoplates with a ratio sodium oleate/oleic acid 4:1. The rarely reported flat shape of the plates was confirmed with 3D transmission electronic microscopy (TEM) tomography. The investigation of the synthesis mechanisms confirmed the major role of chelating ligand and of the heating rate to drive the cubic shape of nanoparticles and showed that the nanoplate formation would depend mainly on the nucleation step and possibly on the presence of a given ratio of oleic acid and chelating ligand (oleate and/or stearate)

    Evaluating the Critical Roles of Precursor Nature and Water Content When Tailoring Magnetic Nanoparticles for Specific Applications

    No full text
    Because of the broad range of application of iron oxide nanoparticles (NPs), the control of their size and shape on demand remains a great challenge, as these parameters are of upmost importance to provide NPs with magnetic properties tailored to the targeted application. One promising synthesis process to tune their size and shape is the thermal decomposition one, for which a lot of parameters were investigated. But two crucial issues were scarcely addressed: the precursors nature and water content. Two in house iron stearates with two or three stearate chains were synthesized, dehydrated, and then tested in standard synthesis conditions of spherical and cubic NPs. Investigations combined with modeling showed that the precursors nature and hydration rate strongly affect the thermal decomposition kinetics and yields, which, in turn, influence the NP size. The cubic shape depends on the decomposition kinetics but also crucially on the water content. A microscopic insight was provided by first-principles simulation showing an iron reduction along the reaction pathway and a participation of water molecules to the building unit formation

    Iron Stearate Structures: An Original Tool for Nanoparticles Design

    No full text
    International audienceIron carboxylates are widely used as iron precursors in the thermal decomposition process or considered as in situ formed intermediate precursors. Their molecular and three-dimensional (3D)-structural nature has been shown to affect the shape, size, and composition of the resulting iron oxide nanoparticles (NPs). Among carboxylate precursors, stearates are particularly attractive because of their higher stability to aging and hydration and they are used as additives in many applications. Despite the huge interest of iron stearates, very few studies aimed up to now at deciphering their full metal-ligand structures and the mechanisms allowing us to achieve in a controlled manner the bottom-up NP formation. In this work, we have thus investigated the molecular structure and composition of two iron stearate precursors, synthesized by introducing either two (FeSt2) or three (FeSt3) stearate (St) chains. Interestingly, both iron stearates consist of lamellar structures with planes of iron polynuclear complexes (polycations) separated with stearate chains in all-trans conformation. The iron content in polycations was found very different between both iron stearates. Their detailed characterizations indicate that FeSt2 is mainly composed of [Fe3-(ÎŒ3-O)St6·xH2O]Cl, with no (or few) free stearate, whereas FeSt3 is a mixture of mainly [Fe7(ÎŒ3-O(H))6(ÎŒ2-OH)xSt12–2x]St with some [Fe3(ÎŒ3-O)St6·xH2O]St and free stearic acid. The formation of bigger polynuclear complexes with FeSt3 was related to higher hydrolysis and condensation rates within the iron(III) chloride solution compared to the iron(II) chloride solution. These data suggested a nucleation mechanism based on the condensation of polycation radicals generated by the catalytic departure of two stearate chains from an iron polycation-based molecule
    corecore