11 research outputs found

    Azores seismogenic zones

    Get PDF
    One condition to perform seismic hazard analysis is knowledge about seismogenic zones that is an invaluable source of information and play an important role because it is fundamental know the processes and properties that control the seismogenic zone. The aim of this work is distinguishing seismogenic zones in the Azores region applying different parameters such as the earthquake density, b-values, focal mechanism, historical seismicity and all of these conjugated within the geodynamic framework of the Azores. We identified 10 seismogenic zones plus the well known Mid Atlantic Ridge. The 10 zones we identified are over the major tectonic structures of the Archipelago, namely Terceira Rift and Linear Volcanic Ridges

    A utilização do ATLANTIS – Tierra 2.0 e de ferramentas SIG para predizer a distribuição espacial e a adequação do habitat de espécies endémicas

    Get PDF
    O conhecimento da distribuição de espécies raras requer muito esforço devido às dificuldades inerentes à detecção das suas populações. Neste capítulo, apresenta-se um exemplo de modelação da distribuição potencial de espécies endémicas de insectos, que constituem uma preocupação de conservação nos Açores. São analisados dados extraídos da base de dados ATLANTIS com o objectivo de desenvolver mapas preditivos da distribuição de quatro escaravelhos endémicos (Insecta, Coleoptera) na ilha Terceira: Cedrorum azoricus azoricus Borges & Serrano, 1993; Trechus terceiranus Machado, 1988; Trechus terrabravensis Borges, Serrano & Amorim, 2004; e Alestrus dolosus (Crotch, 1867). São usadas duas técnicas amplamente aplicadas nestas situações (BIOCLIM e BioMapper) de forma a desenvolver os mapas de distribuição, mas igualmente a obter a descrição do nicho ecológico de cada espécie. Todas as espécies, excepto T. terceiranus, apresentam grandes restrições de habitat. As outras três espécies parecem estar ambientalmente restringidas a duas áreas espaciais bem definidas, localizadas nas partes oeste (Serra de Santa Bárbara) e central (Terra Brava) da ilha Terceira. Contudo, enquanto A. dolosus estará potencialmente espalhado em ambas as áreas, de acordo com os seus requisitos de habitat, C. azoricus azoricus e T. terrabravensis parecem possuir adaptações ambientais muito mais restritivas. No entanto, como os dados sobre a distribuição conhecida destas espécies se revelaram escassos, a eficácia dos mapas de predição não é propriamente a ideal. Deste modo, é discutida de forma exaustiva a utilidade das técnicas utilizadas, num contexto de gestão da conservação. São igualmente discutidos os problemas surgidos durante o processo de modelação dos dados e como estes podem ser resolvidos. Finalmente são apresentadas sugestões para melhorar a informação a obter da base de dados ATLANTIS.ABSTRACT: Ranges of rare species require great efforts to be mapped due to the low detect ability of their populations. In this chapter, we provide an example focusing on several endemic insect species of conservation concern in the Azores. We explore the use of data extracted from ATLANTIS database to develop predictive maps of the distribution of four endemic beetle species (Insecta, Coleoptera) in Terceira Island: Cedrorum azoricus azoricus Borges & Serrano, 1993; Trechus terceiranus Machado, 1988; Trechus terrabravensis Borges, Serrano & Amorim, 2004; and Alestrus dolosus (Crotch, 1867). We use two widely used methodologies (BIOCLIM and BioMapper) to develop such maps, as well as to provide a description of the niche of these species. All species except for T. terceiranus presented highly restricted habitat requirements. The other three species seem to be environmentally restricted to two spatially well-defined areas, placed in the west (Serra de Santa Bárbara) and the centre of the island (Terra Brava). However, while A. dolosus seems to be potentially widespread in these two areas according to its habitat requirements, C. azoricus azoricus and T. terrabravensis appear to have very restricted environmental adaptations. As data (recorded presences) for these species is scarce, the performance of the predictions was not ideal. Therefore, we discuss extensively the utility of such methodologies in the context of conservation management. We also discuss how the problems arose during this work can be overcome, and how ATLANTIS information could be improved

    Evaluation of in vitro Antifungal Activity of Xylosma prockia (Turcz.) Turcz. (Salicaceae) Leaves Against Cryptococcus spp.

    Get PDF
    Cryptococcus species are responsible for important systemic mycosis and are estimated to cause millions of new cases annually. The available therapy is limited due to the high toxicity and the increasing rates of yeast resistance to antifungal drugs. Popularly known as “sucará,” Xylosma prockia (Turcz.) Turcz. (Salicaceae) is a native plant from Brazil with little information on its pharmacological potential. In this work, we evaluated in vitro anticryptococcal effects of the leaf ethanolic extract of X. prockia and its fractions against Cryptococcus gattii and Cryptococcus neoformans. We also evaluated phenotypic alterations caused by ethyl acetate fraction (EAF) (chosen according to its biological results). The liquid chromatography–mass spectrometry (LC-MS) analysis of EAF demonstrated the presence of phenolic metabolites that belong to three structurally related groups as majority compounds: caffeoylquinic acid, coumaroyl-glucoside, and caffeoyl-glucoside/deoxyhexosyl-caffeoyl glucoside derivatives. The minimum inhibitory concentration (MIC) values against C. gattii and C. neoformans ranged from 8 to 64 mg/L and from 0.5 to 8 mg/L, for ethanolic extract and EAF, respectively. The EAF triggered an oxidative burst and promoted lipid peroxidation. EAF also induced a reduction of ergosterol content in the pathogen cell membrane. These effects were not associated with alterations in the cell surface charge or in the thermodynamic fingerprint of the molecular interaction between EAF and the yeasts evaluated. Cytotoxic experiments with peripheral blood mononuclear cells (PBMCs) demonstrated that EAF was more selective for yeasts than was PBMCs. The results may provide evidence that X. prockia leaf extract might indeed be a potential source of antifungal agents.Fil: Folly, Mariany L. C.. Universidade Federal de Juiz de Fora; BrasilFil: Ferreira, Gabriella F.. Universidade Federal de Juiz de Fora; BrasilFil: Salvador, Maiara R.. Universidade Federal de Juiz de Fora; BrasilFil: Sathler, Ana A.. Universidade Federal de Juiz de Fora; BrasilFil: da Silva, Guilherme F.. Universidade Federal de Juiz de Fora; BrasilFil: Santos, Joice Castelo Branco. Ceuma University; BrasilFil: Santos, Julliana R. A. dos. Ceuma University; BrasilFil: Nunes Neto, Wallace Ribeiro. Ceuma University; BrasilFil: Rodrigues, João Francisco Silva. Ceuma University; BrasilFil: Fernandes, Elizabeth Soares. Ceuma University; BrasilFil: da Silva, Luís Cláudio Nascimento. Ceuma University; BrasilFil: de Freitas, Gustavo José Cota. Universidade Federal de Minas Gerais; BrasilFil: Denadai, Ângelo M.. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas; BrasilFil: Rodrigues, Ivanildes V.. Universidade Federal de Juiz de Fora; BrasilFil: Mendonça, Leonardo M.. Universidade Federal de Juiz de Fora; BrasilFil: Monteiro, Andrea Souza. Ceuma University; BrasilFil: Santos, Daniel Assis. Universidade Federal de Minas Gerais; BrasilFil: Cabrera, Gabriela Myriam. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Siless, Gastón Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Lang, Karen L.. Universidade Federal de Juiz de Fora; Brasi

    Síndrome do coração Pós-feriado: pacientes acometidos por arritmia cardíaca em detrimento do consumo exagerado de álcool: Post Holiday coração Syndrome: patients suffered by cardiac arrhythmia to the detriment of exaggerated alcohol consumption

    Get PDF
    INTRODUÇÃO: O álcool é conhecido por beneficiar o sistema cardiovascular com a ativação do sistema fibrinolítico, redução da agregação de plaquetas e aperfeiçoamento do perfil lipídico, entre outros mecanismos, quando consumido em doses moderadas. Todavia, seu uso de maneira abusiva culmina em patologias graves que podem evoluir para a morte, como a hipertensão arterial, a cardiomiopatia alcoólica, a arritmia cardíaca e até a “Síndrome do Coração Pós Feriado” ou do inglês, “Holiday Heart Syndrome”. OBJETIVOS: O presente estudo tem como objetivo delinear sobre a Síndrome do Coração Pós Feriado, transpassando por suas características clínicas, repercussões eletrofisiológicas, diagnóstico e manejo terapêutico. MATERIAIS E MÉTODOS: Dessa forma, o presente trabalho realizou uma revisão sistemática qualitativa, realizado no período entre julho e agosto de 2022, através de artigos das bases de dados Biblioteca Virtual em Saúde (BVS) e United States National Library of Medicine (PubMed). RESULTADOS E DISCUSSÃO: A interação do álcool no organismo está diretamente relacionada com o sistema nervoso autônomo do indivíduo, gerando um estado de desequilíbrio autonômico, assim há alterações elétricas, como acréscimo da frequência cardíaca, gerando um estado de taquicardia. A principal patologia encontrada em questão foi a taquicardia sinusal, sendo um tipo de arritmia e por conseguinte, notou-se a presença da fibrilação atrial, sendo o excesso no consumo de etanol é causador de aproximadamente 67% dos casos de emergências desta última enfermidade. CONCLUSÃO: Portanto, com base na literatura analisada, observou-se que a ingestão alcoólica aguda age retardando o sistema de condução cardíaco, atua no encurtamento do período refratário e o aumento da atividade simpática, além de aumentar os níveis de catecolaminas circulantes. Por fim, também se evidenciou uma associação entre álcool e fatores de risco, principalmente hipertensão e obesidade e essas patologias aumentam os episódios de fibrilação atrial

    Intensidades máximas observadas nos Açores (Portugal): resultados preliminares.

    No full text
    O Arquipélago dos Açores é uma região sismicamente activa. Desde o seu povoamento no séc. XV o arquipélago foi afectado por 33 sismos de intensidade máxima (Io) ≥ VII. O obejctivo é apresentar o primeiro mapa de intensidades máximas observadas (IMO) do arquipélago dos Açores. A elaboração do IMO visa identificar as áreas afectadas no passado por eventos de grande magnitude. Do catálogo sísmico (1915-2003) foram selecionados as intensidades máxima dos eventos ≥ V. Foram adicionados 14 sismos históricos com Io ≥ VII que ocorreram entre 1522 e 1912. Os clusters sísmicos associados a erupções vulcânicas (1957/58 e 1964) assim como réplicas foram removidos para evitar o enviesamento dos resultados. Utilizou-se o método de krigagem ([1], [2]) para fazer a interpolação para obter os valores de intensidade dos pontos desconhecidos com base dos pontos e intensidades conhecidas. O mapa IMO mostra que a parte oriental das ilhas de São Jorge e Graciosa têm os valores de intensidade mais elevados, XI e IX, respectivamente. Nas ilhas da Terceira e Pico as IMO, com intensidades VIII e VII, respectivamente, estão limitadas aos extremos oriental e ocidental. No Faial, uma faixa com direcção NW-SE apresenta os valores de intensidade (X) mais elevada. Em S. Miguel as IMO (VII e X) estão localizadas na parte ocidental, sudeste e norte da ilha. Por fim, só a parte oriental da ilha de Santa Maria apresenta os valores mais elevados de IMO (VI). Não apresentamos resultados para as ilhas Flores e Corvo, devido à reduzida sismicidade que não preenche os critérios estabelecidos para a selecção de sismos com Io ≥ V. Os mapas IMO não têm capacidade para descriminar os efeitos de sítio, apesar de mostrarem as áreas com elevado movimento do solo

    Maximum Observed Intensity Map for the Azores Archipelago (Portugal) from 1522- 2012 seismic catalogue

    No full text
    The Azores archipelago is a seismically active region composed of nine islands and located at the triple junction of the American, Nubian, and Eurasian plates. Since its settlement in the fifteenth century, 33 earthquakes with intensity higher than VII have been reported. This article shows areas that experienced strong ground shaking using maximum observed intensity (MOI) mapping. For this purpose, 323 records from 167 earthquakes in the period 1522–2012 have been compiled, and MOI values are interpolated on a regular grid of points using the kriging method. The comparison of observed and calculated MOI for four damaging and deadly earthquakes indicates a good calibration of the procedure relative to the available dataset. For the islands of the central group, which comprises Terceira, Graciosa, São Jorge, Pico, and Faial, the highest calculated intensities (XI) are located in the eastern part of São Jorge Island. Intensities (X) are observed on Faial along a northwest–southeast stripe. For Graciosa, Terceira, and Pico, the estimated maximum intensities are IX, VIII, and VII, respectively. For the eastern group of islands, the highest intensities (X) are located in the southeastern part of São Miguel Island, and on Santa Maria Island the maximum intensity of VI is observed in its eastern part. Finally, Flores and Corvo Islands, located on the American plate, have a very low seismicity

    Impact of biochar particle size and feedstock type on hydro-physical properties of sandy soil

    No full text
    Biochar, as an organic amendment, could positively change soil properties, especially soil with low organic matter and/or poor structure. Biochar application in sandy soil with low organic matter could be an effective tool for improving hydro-physical parameters of the soil economically and ecologically as well. The effect on bulk density, particle density, porosity, saturated hydraulic conductivity and available water content for plants of two biochar types applied at three different particle sizes in a sandy soil was examined. The results confirmed previous studies, showing decreased bulk density, particle density and saturated hydraulic conductivity and partially increased available water content for plants and porosity. Both biochar type and particle size affected the studied soil hydro-physical parameters. After analysis and comparison of two different types of biochar and three particle sizes, the most effective treatment for sandy soil was proved by the biochar produced from willow with the smallest particle size (<125 µm)

    Implications of volatile fatty acid profile on the metabolic pathway during continuous sulfate reduction.

    No full text
    Volatile fatty acid (VFA) profile is an important parameter in anaerobic reactors because it enables the assessment of metabolic pathways. Volatile fatty acids were monitored during sulfate reduction in a UASB (upflow anaerobic sludge blanket) reactor treating 2 g/L sulfate concentration and with the organic loading increasing from 3.5 kg COD/m3 d to 5.9 kg COD/m3 d, for a 1-day residence time. In the absence of recirculation, the best outcome (65% reduction) was noticed with the lowest organic loading (3.55 kg/m3 d). When recirculation was applied, sulfate reduction yields increased to 89%, corresponding to a sulfate removal rate of 1.94 kg SO4 2_/m3 d. The reactor performance was discussed in relation to microbial diversity and metabolic pathways. At high organic loading, two metabolic pathways account for lactate degradation: (i) lactate is oxidized to acetate and carbon dioxide by the incomplete-oxidizer SRB (sulfate-reducing bacteria) Desulfomonas, Desulfovibrio, Desulfolobus, Desulfobulbus and Desulfotomaculum spp.; (ii) lactate is converted to acetate by fermenting bacteria such as Clostridium sp. High propionate concentrations imply that there are low sulfate reduction efficiencies

    Field and classroom initiatives for portable sequence-based monitoring of dengue virus in Brazil

    No full text
    This work was supported by Decit, SCTIE, Brazilian Ministry of Health, Conselho Nacional de Desenvolvimento Científico - CNPq (440685/ 2016-8, 440856/2016-7 and 421598/2018-2), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES - (88887.130716/2016-00), European Union’s Horizon 2020 Research and Innovation Programme under ZIKAlliance Grant Agreement (734548), STARBIOS (709517), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ (E-26/2002.930/2016), International Development Research Centre (IDRC) Canada (108411-001), European Union’s Horizon 2020 under grant agreements ZIKACTION (734857) and ZIKAPLAN (734548).Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil / Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil / Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Laboratório de Ecologia de Doenças Transmissíveis na Amazônia. Manaus, AM, Brazil.Secretaria de Saúde do Estado de Mato Grosso do Sul. Laboratório Central de Saúde Pública. Campo Grande, MS, Brazil.Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Secretaria de Saúde do Estado da Bahia. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral. Recife, PE, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso. Cuiabá, MT, Brazil.Laboratório Central de Saúde Pública do Distrito Federal. Brasília, DF, Brazil.Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Gorgas Memorial Institute for Health Studies. Panama, Panama.Universidade Federal da Bahia. Vitória da Conquista, BA, Brazil.Laboratorio Central de Salud Pública. Asunción, Paraguay.Fundação Oswaldo Cruz. Bio-Manguinhos. Rio de Janeiro, RJ, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, BrazilFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, BrazilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso do Sul. Campo Grande, MS, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso do Sul. Campo Grande, MS, Brazil.Instituto de Investigaciones en Ciencias de la Salud. San Lorenzo, Paraguay.Secretaria de Estado de Saúde de Mato Grosso do Sul. Campo Grande, MS, Brazil.Fundação Oswaldo Cruz. Campo Grande, MS, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral. Recife, PE, Brazil.Laboratório Central de Saúde Pública do Distrito Federal. Brasília, DF, Brazil.Secretaria de Saúde de Feira de Santana. Feira de Santana, Ba, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Secretaria de Saúde do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Hospital das Forças Armadas. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Universidade Nova de Lisboa. Instituto de Higiene e Medicina Tropical. Lisboa, Portugal.University of Sydney. School of Life and Environmental Sciences and School of Medical Sciences. Marie Bashir Institute for Infectious Diseases and Biosecurity. Sydney, NSW, Australia.University of KwaZulu-Natal. College of Health Sciences. KwaZulu-Natal Research Innovation and Sequencing Platform. Durban, South Africa.University of Oxford. Peter Medawar Building. Department of Zoology. Oxford, UK.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Universidade Estadual de Feira de Santana. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Universidade de Brasília. Brasília, DF, Brazil.Universidade Salvador. Salvador, BA, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hantaviroses e Rickettsioses. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Laboratório de Ecologia de Doenças Transmissíveis na Amazônia. Manaus, AM, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Faculdade de Medicina Veterinária. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Faculdade de Medicina Veterinária. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública do Estado do Paraná. Curitiba, PR, Brazil.Laboratório Central de Saúde Pública do Estado de Rondônia. Porto Velho, RO, Brazil.Laboratório Central de Saúde Pública do Estado do Amazonas. Manaus, AM, Brazil.Laboratório Central de Saúde Pública do Estado do Rio Grande do Norte. Natal, RN, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso. Cuiabá, MT, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Noel Nutels. Rio de Janeiro, RJ, Brazil.Instituto Adolfo Lutz. São Paulo, SP, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.University of Oxford. Peter Medawar Building. Department of Zoology. Oxford, UK.Instituto Nacional de Enfermedades Virales Humanas Dr. Julio Maiztegui. Pergamino, Argentina.Gorgas Memorial Institute for Health Studies. Panama, Panama.Gorgas Memorial Institute for Health Studies. Panama, Panama.Gorgas Memorial Institute for Health Studies. Panama, Panama.Instituto de Salud Pública de Chile. Santiago, Chile.Instituto de Diagnóstico y Referencia Epidemiológicos Dr. Manuel Martínez Báez. Ciudad de México, México.Instituto Nacional de Enfermedades Infecciosas Dr Carlos G Malbrán. Buenos Aires, Argentina.Ministerio de Salud Pública de Uruguay. Montevideo, Uruguay.Instituto Costarricense de Investigación y Enseñanza em Nutrición y Salud. Tres Ríos, Costa Rica.Instituto Nacional de Investigacion en Salud Publica Dr Leopoldo Izquieta Pérez. Guayaquil, Ecuador.Instituto Nacional de Investigacion en Salud Publica Dr Leopoldo Izquieta Pérez. Guayaquil, Ecuador.Universidade Federal de Pernambuco. Recife, PE, Brazil.Secretaria de Saúde do Estado de Minas Gerais. Belo Horizonte. MG, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Secretaria de Saúde de Feira de Santana. Feira de Santana, BA, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015–2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses
    corecore