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Cryptococcus species are responsible for important systemic mycosis and are
estimated to cause millions of new cases annually. The available therapy is limited
due to the high toxicity and the increasing rates of yeast resistance to antifungal
drugs. Popularly known as “sucará,” Xylosma prockia (Turcz.) Turcz. (Salicaceae) is a
native plant from Brazil with little information on its pharmacological potential. In this
work, we evaluated in vitro anticryptococcal effects of the leaf ethanolic extract of
X. prockia and its fractions against Cryptococcus gattii and Cryptococcus neoformans.
We also evaluated phenotypic alterations caused by ethyl acetate fraction (EAF) (chosen
according to its biological results). The liquid chromatography–mass spectrometry (LC-
MS) analysis of EAF demonstrated the presence of phenolic metabolites that belong to
three structurally related groups as majority compounds: caffeoylquinic acid, coumaroyl-
glucoside, and caffeoyl-glucoside/deoxyhexosyl-caffeoyl glucoside derivatives. The
minimum inhibitory concentration (MIC) values against C. gattii and C. neoformans
ranged from 8 to 64 mg/L and from 0.5 to 8 mg/L, for ethanolic extract and EAF,
respectively. The EAF triggered an oxidative burst and promoted lipid peroxidation.
EAF also induced a reduction of ergosterol content in the pathogen cell membrane.
These effects were not associated with alterations in the cell surface charge or in the
thermodynamic fingerprint of the molecular interaction between EAF and the yeasts
evaluated. Cytotoxic experiments with peripheral blood mononuclear cells (PBMCs)
demonstrated that EAF was more selective for yeasts than was PBMCs. The results
may provide evidence that X. prockia leaf extract might indeed be a potential source of
antifungal agents.
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INTRODUCTION

In recent years, the incidence of opportunistic mycosis has
increased significantly, becoming an important public health
problem (Herkert et al., 2017). Cryptococcosis is an important
systemic mycosis caused by fungi of the genus Cryptococcus,
mainly by Cryptococcus neoformans and Cryptococcus gattii,
responsible for approximately one million new cases and 600,000
deaths annually (Maziarz and Perfect, 2016). Cryptococcal
meningitis is the most severe form of the disease and remains
a major problem in resource-limited countries, where HIV
prevalence is high and access to healthcare is limited. Worldwide,
nearly 220,000 new cases of cryptococcal meningitis occur each
year, resulting in 181,000 deaths (Rajasingham et al., 2017). In this
context, immunocompromised patients, such as the elderly and
individuals with chronic pathologies, are at high risk of becoming
ill with cryptococcosis (May et al., 2016).

The current therapeutic options for treating these mycoses are
restricted due to the increased resistance of yeasts to the available
drugs, as well as the high toxicity of some, such as amphotericin
B (AMB) (Bongomin et al., 2018; Wiederhold, 2018).

Several strategies and techniques are currently available to
assist in drug discovery and development, and natural products
represent one of the most successful alternatives (Davison and
Brimble, 2019). Different studies have investigated the activity
and efficacy of plant extracts/fractions (Thammasit et al., 2018)
and their secondary metabolites (Alves et al., 2017; Li et al., 2017)
against Cryptococcus spp. These have indicated that plant-derived
preparations and compounds act in such pathogens by targeting
their survival and virulence, increasing host defense or enhancing
the activity of known antifungal drugs. However, the antifungal
potential of many plant species have not yet been evaluated.

Xylosma prockia (Turcz.) Turcz. (Salicaceae) is a native species
from Brazil (found mainly in the northeast, southeast, and south),
popularly known as “sucará” (Longhi et al., 2006). The few
existing studies on this plant are restricted to its morphology and
taxonomy and have not addressed its chemical constitution and
pharmacological activities. Flavonoids, triterpenes, coumarins,
and phenolic glycosides have been described in other species of
the genus Xylosma (Parveen and Ghalib, 2012; Devi et al., 2013).
In addition, reports have demonstrated antifungal, antibacterial,
antispasmodic, narcotic, and sedative properties for extracts and
compounds isolated from some Xylosma spp. (Mosaddik et al.,
2004; Castro et al., 2008; Devi et al., 2013).

In this work, the antifungal activity of X. prockia leaf ethanolic
extract (EE) and fractions was investigated for the first time
against C. neoformans and C. gattii. The possible effects of
X. prockia on the pathogen phenotype were also investigated.

MATERIALS AND METHODS

Plant Material and Extraction
The leaves of X. prockia (Turcz.) Turcz. (Salicaceae) were
collected in Governador Valadares (18◦51′04′′S, 41◦56′58′′W),
Minas Gerais, Brazil, in December 2015. The sample was
identified by the botanist Dr. Ronaldo Marquete and deposited

in the RB Herbarium of Rio de Janeiro Botanical Garden, Rio de
Janeiro, Brazil (voucher specimen number RB 773293), in August
2018. The research was authorized by the National System for
the Management of Genetic Heritage and Associated Traditional
Knowledge (SISGEN; no. A66F830).

The leaves were dried at 40◦C in an air-circulating oven,
and the powdered leaves (340 g) were extracted by maceration
in 99.8% ethanol for 5 days (plant: solvent, 1:10, w/v;
at room temperature). The organic solvent was evaporated
under reduced pressure in a rotary evaporator (temperature
below 45◦C) to obtain the EE (68.2 g, 20.1%). Subsequently,
the EE has undergone a sequential liquid–liquid extraction
with organic solvents of increased polarity in the following
order: n-hexane (HF, 14 g, 20.5%), dichloromethane (DF,
3 g, 4.4%), ethyl acetate (EAF, 8 g, 11.7%), and n-butanol
(BF, 6 g, 8.8%).

Liquid Chromatography–Mass
Spectrometry (LC-MS) Analysis
The LC-MS analyses were performed in an RRLC Agilent 1200
using a Luna C18 column (3 µm, 2.0 × 100 mm; Phenomenex,
Torrance, CA, United States). The mobile phase consisted of 85%
water containing 0.1% formic acid (A) and 15% acetonitrile (B).
The flow rate was 0.3 ml/min, and the column temperature was
set to 30◦C. Detection was performed with a diode array detector
(DAD) from 190 to 950 nm coupled to a mass spectrometer.

Mass spectrometric analyses were performed in a Bruker
micrOTOF-Q II mass spectrometer (Bruker Daltonics, Billerica,
MA, United States), equipped with an electrospray source using
the negative mode. The instrument was operated at a capillary
voltage of 4.5 kV with an end-plate offset of 500 V, dry
temperature of 200◦C using N2 as dry gas at 6.0 L/min, and a
nebulizer pressure of 3.0 bars. Multipoint mass calibration was
carried out using a sodium formate solution from m/z 50 to 1,200
in the negative ion mode. Data acquisition and processing were
carried out using the software Bruker Compass Data Analysis
version 4.3 supplied with the instrument.

Cryptococcus Strains and Study Design
We initially assessed the antifungal activity of EE and its fractions
against two strains of C. gattii and two strains of C. neoformans.
The ethyl acetate fraction (EAF) presented better antimicrobial
activity and yield; therefore, it was chosen for this study.

For the “antifungal drug susceptibility testing” assays, we
tested two reference strains of C. gattii [American Type
Culture Collection (ATCC) 24065 and ATCC 32608] and four
reference strains of C. neoformans (ATCC 24067, ATCC 28957,
ATCC 62066, and ATCC H99), which were obtained from the
Culture Collection of the University of Georgia (Atlanta, GA,
United States). Seven clinical isolates of C. gattii, five clinical
isolates of C. neoformans, and one environmental isolate of
each species, all from the Culture Collection of the Mycology
Laboratory/ICB-UFMG, were also used in this study (Magalhães
et al., 2013). Isolates were maintained on Sabouraud dextrose
broth (SDB) at −80◦C. Prior to each test, the strains were
subcultured on Sabouraud dextrose agar (SDA) for 48 h at 35◦C.
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The ATCC 32608 and L27/01 of C. gattii and ATCC 2895 and
ATCC H99 of C. neoformans strains were randomly chosen for
further experiments, except for ITC, in which we used ATCC
32068 and ATCC H99 strains.

Antifungal Drug Susceptibility Testing
The minimum inhibitory concentrations (MICs) for EE and
its fractions were determined by the antifungal microdilution
susceptibility standard test, proposed by the CLSI M27-A3
method (Institute Clinical and Laboratory Standards [CLSI],
2008). The inoculum was prepared in sterile saline, and the
transmittance of suspensions was adjusted to 75–77% (530 nm),
followed by further dilution in RPMI 1640 buffered with
MOPS (Sigma-Aldrich R©) medium to achieve 1.0–5.0 × 103

colony-forming unit (CFU)/ml. The final concentrations of EE
and fractions ranged from 0.25 to 128 mg/L, from 0.125 to
64 mg/L for fluconazole (FLC) (Sigma-Aldrich R©), and from
0.03 to 16 mg/L for AMB (Sigma-Aldrich R©). The plates were
incubated at 35◦C for 72 h. The MIC was determined visually as
100% growth inhibition when compared to the control, except
for FLC, in which the MIC was determined visually as 50%
growth inhibition, when compared to the control. The results
were confirmed through the assessment of fungal metabolic
activity by adding 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT) (Sigma-Aldrich R©) (5.0 mg/ml). For
this, the plates were incubated at 35◦C for 3 h, and DMSO was
added before spectrophotometric reading at 570 nm.

The minimal fungicidal concentration (MFC) was defined as
the concentration of the antifungal agent in which the number of
CFUs was zero. For determining the MFC, at the end of the MIC
experiments, the samples (10 µl) were removed from all wells of
the standard MIC plates and placed on Petri plates containing
SDA (Difco R©). The plates were incubated for 72 h at 35◦C before
the colonies were counted. All tests were performed in duplicate
and repeated three times.

Time–Kill Curves
An assay was performed to evaluate time–kill kinetics of EAF
against C. gattii (ATCC 32068 and L27/01) and C. neoformans
(ATCC 28957 and ATCC H99) strains as previously described by
Ahmad et al. (2011), with modifications. A 100-µl inoculum of
yeasts (1.0–5.0× 103 CFU/ml) was placed on microtiter plates at
different concentrations of EAF (MIC, 2 × MIC, and 4 × MIC)
and incubated at 35◦C for 72 h. A control growth was performed
at 0, 3, 6, 12, 24, 36, 48, and 72 h. Aliquots of 100 µl were removed
from each test and plated on SDA (Difco R©). For control growth,
the aliquots were diluted in saline solution prior to plating.
Colony counts were determined after incubation at 35◦C for 72 h.
The results were expressed as CFUs per milliliter.

In vitro Interaction of FLC and AMB With
EAF
The possible interactions between EAF (0.25–128 mg/L) and
the commercially used antifungals FLC (0.5–32 mg/L) and
AMB (0.03 to 1 mg/L) were investigated in vitro by using
a checkerboard microdilution assay, as previously described

by Santos et al. (2012). The plates were incubated at 35◦C
for 72 h, and the cellular metabolic activity was determined
by the MTT salt.

The interactions were determined by the fractional inhibitory
concentration index (FICI) (Odds, 2003). FICI was calculated as
(MIC FLC or AMB in combination with EAF/MIC FLC or AMB
alone)+ (MIC EAF in combination with FLC or AMB/MIC EAF
alone). Interactions were classified as synergism if FICI ≤ 0.5,
indifference if 0.5 > FICI ≤ 4.0, and antagonism if FICI > 4.0.
This assay was tested in duplicate and repeated twice.

Measurement of Reactive Oxygen
Species (ROS) Production
The endogenous production of ROS and peroxynitrite by fungal
cells was measured by fluorometry (Synergy 2 SL Luminescence
Microplate Reader; BioTek R©) with specific probes (Ferreira et al.,
2013). The cells (1.0 × 103 to 5.0 × 103 cells per milliliter)
were incubated with EAF (MIC and 2 × MIC) or AMB
(MIC) in RPMI 1640 without phenol red (Sigma-Aldrich R©)
containing 10 mM 2’,7’-dichlorofluorescein diacetate (for ROS
quantification; Invitrogen R©) or 20 mM dihydrorhodamine
123 (for peroxynitrite quantification; Sigma-Aldrich R©). The
fluorescence was measured 24 h later at 500 nm. At the end of the
experiments, 10 µl of each sample was placed on SDA-containing
plates, and the numbers of CFU were counted. The results are
expressed as arbitrary units of fluorescence/CFU.

Measurement of Mitochondrial
Membrane Potential
The cells (1× 106 cells per milliliter, in 500 µl) were treated with
EAF (MIC) for 24 h, at 37◦C. After being washed, the cell pellets
were resuspended in phosphate-buffered saline (PBS) (500 µl)
and labeled with rhodamine 123 (Rho 123) (10 µg/ml in the dark
for 10 min) (Ronot et al., 1986; Olsson et al., 1987; Alves et al.,
2017). The cells were washed three times, resuspended in PBS,
and analyzed by flow cytometry (BD AccuriTM, United States;
FL3 channel for AO and FL1 for Rho 123). A total of 10,000
events were analyzed for each sample. Changes in the fluorescent
intensity of Rho 123 were quantified using the variation index
(VI) obtained by the equation (MT − MC)/MC, in which MC
is the mean of fluorescent intensity of control and MT is the
mean of treated cells. The negative values of VI correspond to
mitochondrial membrane depolarization.

Lipid Peroxidation
Thiobarbituric acid-reactive substances (TBARSs) were
measured as an index of lipid peroxidation products, as
previously described by Soares et al. (2011). C. neoformans and
C. gattii were inoculated into 50 ml of SDB overnight (Difco R©)
containing EAF (MIC and 2×MIC) or hydrogen peroxide (HP)
as a positive control. The cultures were incubated for 24 h. After
incubation, the tubes were centrifuged (Jouan, model BR4i) at
2,700 rpm for 5 min at 4◦C, and the supernatant was discarded.
The precipitates (cells) were washed with sterile distilled water,
and their net wet weight was determined. The TBARS values
were calculated using the extinction coefficient of 156 L/mol·cm.

Frontiers in Microbiology | www.frontiersin.org 3 February 2020 | Volume 10 | Article 3114

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-03114 February 4, 2020 Time: 17:41 # 4

Folly et al. Antifungal Activity of Xylosma prockia

The results were divided by the net weight and expressed as
nanomolars per gram.

Ergosterol Quantification
Total intracellular sterols were extracted as previously described,
with modifications (Arthington-Skaggs et al., 1999; Alves et al.,
2017). C. neoformans and C. gattii were inoculated into 50 ml of
SDB overnight (Difco R©), containing MIC or 2 ×MIC of EAF or
FLC (MIC) as a positive control. The cultures were incubated for
24 h. After incubation, the tubes were centrifuged (Jouan, model
BR4i) at 2,700 rpm for 5 min at 4◦C, and then the supernatant
was removed. The cells were washed with sterile distilled water,
and the net wet weight pellet was determined. Three milliliters
of a 25% potassium hydroxide alcohol solution (25 g of KOH
in 65% ethanol) was added to each pellet and mixed for 1 min.
Cell suspensions were transferred to sterile tubes and incubated
at 85◦C in a water bath for 1 h. After incubation, the tubes were
allowed to cool down to room temperature. The sterols were
extracted by adding a mixture of 1 ml of sterile distilled water
and 3 mL of n-heptane followed by vigorous vortexing for 3 min.
The supernatant was removed, and the reading was performed in
a spectrophotometer at 282 and 230 nm. A calibration curve with
standard ergosterol (Sigma-Aldrich R©) was used to calculate the
quantity of ergosterol. In all cases, the absorbance of ergosterol
was the result of the subtraction of the absorbance obtained at
282 and 230 nm (Breivik and Owades, 1957). The results were
divided by net weight and expressed as mg/L·g−1.

Sorbitol Test
The sorbitol protection assay was carried out by the modified
CLSI M27-A3 protocol as described above (Lee and Kim, 2016).
Briefly, one plate was prepared containing EAF ranging from
0.25 to 128 mol/L and another plate containing EAF ranging
from 0.25 to 128 mol/L plus 0.8 M of sorbitol as osmotic
protectant. The plates were incubated at 35◦C for 72 h. The
reading was performed visually. All tests were conducted in
duplicates for each strain.

Carboxyfluorescein Succinimidyl Ester
(CFSE) Assay
Cryptococcus gattii and C. neoformans were grown in RPMI
supplemented with 0.5 × MIC of EAF or with no drugs for
24 h at 37◦C, washed in PBS, and stained with 25 µg/ml CFSE
(Sigma-Aldrich R©) for 30 min at 30◦C. The yeasts were washed
in PBS containing 2% bovine serum albumin (BSA) to remove
excessive CFSE. Stained yeast cells were passed through a 25-
G 7/8-in. needle to dissociate clumped cells. Flow acquisition
was performed with a FACSCalibur flow cytometer (Becton-
Dickinson R©), using the CellQuest software (Becton-Dickinson R©).
A total of 10,000 events were analyzed for each sample. The
results are expressed as arbitrary units of fluorescence.

Cell Diameter, Capsule Size, and Zeta
Potential (ZP) Measurements
Yeasts cells cultured with 0.5 × MIC of EAF were visualized
with an optical microscope (Axioplan, Carl Zeiss R©) following

suspension in India ink. The capsule and the diameter of
at least 100 cells were measured using the ImageJ 1.40g
software1 (National Institutes of Health, NIH, Bethesda,
MD, United States). The surface-to-volume ratio (S/V) was
calculated using the formula 3/r, in which r is the radius
(Ferreira et al., 2015).

Zeta Potential experiments were performed using a Malvern
Zetasizer Nano ZS equipment (Ferreira et al., 2016). The ZP was
determined by a laser Doppler microelectrophoresis technique, at
a scattering angle of 173◦, using a disposable cell folded capillary
(DPS1060). Zeta Plus software was used for ZP (Brookhaven
Instruments Corp., Holtsville, NY, United States). ZP values were
calculated as the average of 10 independent measurements, each
obtained as the mean of 30 counts.

Isothermal Titration Calorimetry (ITC)
Isothermal Titration Calorimetry experiments were carried out
with one repetition using a VP-ITC microcalorimeter (MicroCal,
LLC, Northampton, MA, United States) at 25◦C, after previous
electrical and chemical calibration (Monteiro et al., 2011). All
the solutions employed in the experiment were previously
degasified under vacuum (140 mbar) during 8 min. Each titration
experiment consisted of 51 successive injections of 5 µl of EAF
at 1,000 mg/L into a chamber containing 1.5 ml of C. gattii
and C. neoformans suspension at 1 × 106 CFU/ml. The first
1-ml injection was discarded to eliminate diffusion effects of the
syringe material to the calorimetric chamber. The injection time
was 2 s, and the interval between the injections was 240 s.

Human PBMC Viability
The MTT colorimetric assay, as proposed by Mosmann (1983),
was used to determine the PBMC viability when grown
with EAF. PBMCs were collected from eight healthy human
volunteers (non-smoking donors who had not received any
medication for the last 15 days prior to sampling, aged 18–
35 years old) who provided written formal consent. This
study was approved by the Research Ethics Committee of
the Federal University of Juiz de Fora (protocol number:
70972117.0.0000.5147). The cells were obtained by the standard
method of density gradient centrifugation over Histopaque R-
1119 according to the manufacturer’s instructions. PBMCs were
suspended in a supplemented RPMI 1640 culture medium
(Life Technologies R©) containing 10% fetal bovine serum (Life
Technologies R©), streptomycin (100 µg/ml; Sigma-Aldrich R©), and
penicillin (100 U/ml; Sigma-Aldrich R©).

In a 96-well plate, 100 µl of PBMCs at a density of 1 × 106

cells per milliliter suspended in RPMI 1640 medium was added.
After 24 h of incubation at 37◦C in CO2, the cells were incubated
with 100 µl of different concentrations of EAF (4–512 µg/ml;
in RPMI 1640 medium), in CO2 (5%), at 37◦C, for 24 h. Then,
10 µl of MTT solution (5 mg/ml; Sigma-Aldrich R©) was added
to all wells of the plate, which was incubated for 4 h. After
the incubation period, MTT medium was carefully removed
from all wells, and 100 µl of DMSO (Nuclear R©) was added
to solubilize formazan. The plates were gently shaken at room

1http://rsb.info.nih.gov/ij/
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temperature for 5–10 min and read at 540 nm in an ELISA reader
(Biochrom Asys Expert Plus R©). This assay was tested in duplicate
and repeated three times.

Statistical Analysis
The results were expressed as mean ± standard error (SE),
and P-values ≤ 0.05 were considered statistically significant.
All statistical analyses were performed using GraphPad Prism
version 6.00 for Windows (GraphPad Software, San Diego,
CA, United States). Comparisons between two groups were
conducted by Student’s t-test (parametric data) or the Mann–
Whitney test (non-parametric data). Multiple comparisons
were performed by one-way analysis of variance (ANOVA)
followed by Dunn’s test.

RESULTS

Characterization of Antifungal Effects of
Leaf EE and EAF of X. prockia
Xylosma prockia EE presented MIC values from 8 to 64 mg/L
against C. gattii and C. neoformans (Figure 1A). Among the

tested fractions, EAF exhibited the best results (higher yield and
lower values of MIC) (Supplementary Table S1) and was chosen
for the experiments. The EAF was effective against both C. gattii
and C. neoformans, with MIC values of 0.5–8 mg/ml and MFC
from 1 to 8 mg/ml (Figure 1A). Similar results were obtained for
FLC (MIC of 2–16 mg/L) (Figure 2A).

The time-dependent effects of EAF on C. gattii and
C. neoformans viability were also investigated in a time–kill
assay (Figures 2C,D). EAF MIC reduced 97.5% of C. gattii
and 99% of C. neoformans growth when incubated for at 72
and 36 h, respectively. C. gattii growth was reduced by 100%
following 36 h of exposure to EAF at 2 × MIC and 4 × MIC.
A similar effect was observed for C. neoformans 24 h post
incubation with EAF.

Ethyl acetate fraction was also tested in combination with
FLC and AMB, drugs usually chosen to treat cryptococcosis
(Mourad and Perfect, 2018). No interactions were observed
between EAF and these antifungal drugs when assessed against
C. gattii (ATCC 32068 and L27/01) and C. neoformans strains
(ATCC 28957 and ATCC H99) (Figure 2B).

The high-performance liquid chromatography–
mass spectrometry (HPLC-MS) analysis of the EAF of

FIGURE 1 | High-performance liquid chromatography–ultraviolet (HPLC-UV) (270–320 nm, upper trace) and mass spectrometry (MS) (base peak chromatogram,
lower trace) profile of ethyl acetate fraction (EAF) of Xylosma prockia leaves in the negative mode (−) (A). Detected compounds in EAF of X. prockia in electrospray
ionization (ESI) (−) (B).
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Strains MIC EE 
(mg/L)

MICEAF 
(mg/L)

MCF EAF 
(mg/L)

MIC FLC 
(mg/L)

MIC AMB 
(mg/L)

C. gattii

ATCC 24065 32 8 8 2 0,12

ATCC 32068 32 4 4 2 0,06

L28/02 (C) 16 4 8 4 0,12

23/10993 (C) 8 0,5 1 16 0,5

196L/03 (C) 32 1 2 8 0,12

1913ER (C) 32 4 4 16 0,5
547/OTTI/94-

PI-10 (E)
32 2 4 16 0,5

L27/01 (C) 32 8 16 8 0,12

29/10893 (C) 64 2 4 8 0,5

L24/01 (C) 16 8 16 8 0,5
Aritmetic 

Mean 29.6 4.1 6.7 8.8 0.3

Geometric 
Mean 26 3 5 7 0.22

C. 
neoformans

ATCC 28957 32 4 4 2 0,25

ATCC 24067 8 1 2 4 0,5

ATCC 62066 32 8 8 2 0,25

ATCC H99 32 4 4 4 0.25

LMM 820 (C) 32 8 16 2 0,5

C-3-1 (E) 32 4 8 4 1

WP (C) 32 8 8 8 0,5

RN-01 (C) 32 8 8 2 0,25
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FIGURE 2 | Screening of the antimicrobial effects of Xylosma prockia leaves. Table listing the MIC of ethanolic extract (EE), ethyl acetate fraction (EAF), fluconazole
(FLC), and amphotericin B (AMB) plus the MFC of EAF against Cryptococcus gattii and Cryptococcus neoformans (A). Table showing mean of fractional inhibitory
concentration index (FICI) and interaction between antifungal drugs and EAF against two strains of C. gattii and C. neoformans (B). Time–kill curves generated
against two strains of C. gattii (C) and C. neoformans (D) at different concentrations of EAF. The results of the time–kill curve are expressed as the percentage of
growth compared with growth of the control. Table showing mean of fractional inhibitory concentration index (FICI) and interaction between antifungal drugs and EAF
against two strains of C. gattii and C. neoformans (D). ATCC, American Type Culture; E, Environmental; C, Clinical; MIC, Minimal inhibitory concentration; MFC,
Minimal fungicidal concentration.

X. prockia obtained using electrospray ionization (ESI)
in negative ionization mode allowed visualization of 15
major peaks (Figure 1), which were assembled in three
distinct groups of compounds (I, caffeoylquinic acid
derivatives; II, coumaroyl-glucoside derivatives; III, caffeoyl-
glucoside/deoxyhexosyl-caffeoyl glucoside derivatives). Based
on the fragmentation pattern (Supplementary Figure S2), type
I compounds presented peaks corresponding to characteristic
fragments of quinic acid at m/z 191 and caffeic acid at m/z
179 and m/z 161. Additionally, the observed product ions in
each MS/MS spectrum allowed the isomeric differentiation
of some compounds (Table 1). Type II and compounds 6–8
were identified as 6-p-coumaroyl-glucose or 6-caffeoyl-glucose
derivatives, respectively, based on key fragmentation patterns
(m/z 205 ions for coumaroyl and m/z 221 for caffeate derivatives).

The compounds having the highest relative abundance in the
chromatogram showed [M–H]− at m/z 419.1342, corresponding
to a molecular formula of C21H24O9, being consistent with the
presence of coumaroate, glucose, and an additional residue,
C6H7O, in the metabolites. Although similar compounds
with a C6 residue attached to the sugar have been reported
(Feistel et al., 2017), the preliminary spectroscopic data
would indicate that they have different structures and that
further isolation would be mandatory to assess the complete
characterization of these isomeric compounds (6, 7, and 8; and
9, 10, and 12).

The metabolites of group III, with [M–H]− ion at m/z
581, were identified as 6-caffeoyl-3-deoxyhexosyl glucoside
derivatives, based on the product ions observed in their MS/MS
spectra, mainly m/z 487 (loss of C6H7O moiety), 435 (loss of
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TABLE 1 | Hydroxycinnamic acid derivatives identified by high-performance liquid chromatography (HPLC)–electrospray ionization (ESI)–mass spectrometry (MS) in the
ethyl acetate fraction (EAF) of Xylosma prockia.

Number Group Tr (min) Proposed
compound

Molecular
formula

[M–H]− (m/z) Calculated
[M–H]− (m/z)

Error
(ppm)

Precursor
ion

Product ions
(relative
intensity)

References

1 III 10.1 caffeoyl glucose C15H18O9 341.0876 341.0878 0.5 341 135 (100), 179
(60), 161 (55)

2 I 10.7 5-caffeoyl-quinic
acid (5-CQA)

C16H18O9 353.0894 353.0878 −4.6 353 191 (100), 179
(70), 135 (20)

Ouyang et al., 2018

3 I 10.9 3-caffeoyl-quinic
acid (3-CQA)

C16H18O9 353.0862 353.0878 4.7 353 191 (100) Ouyang et al., 2018

4 II 11.0 coumaroyl-glucose C15H18O8 325.0920 325.0929 2.9 325 119 (100), 145
(50), 163 (30)

5 II 12.1 coumaroyl-glucose C15H18O8 325.0941 325.0929 −3.9 325 119 (100), 145
(50), 163 (30)

6 III 14.7 caffeoyl-glucoside C21H24O10 435.1302 435.1297 −1.3 435 281 (60), 179
(80), 161 (100)

7 III 15.0 caffeoyl-glucoside C21H24O10 435.1307 435.1297 −2.3 435 281 (60), 179
(80), 161 (100)

8 III 15.4 caffeoyl-glucoside C21H24O10 435.1304 435.1297 −1.7 435 281 (60), 179
(80), 161 (100)

9 II 16.4 coumaroyl-
glucoside

C21H24O9 419.1342 419.1348 1.3 419 265 (100), 205
(60), 163 (55),
145 (50), 235

(25)

10 II 16.6 coumaroyl-
glucoside

C21H24O9 419.1350 419.1348 −0.7 419 265 (100), 205
(60), 163 (55),
145 (50), 235

(25)

11 I 16.8 5-caffeoyl-glucosyl-
quinic-acid

C22H28O14 515.1412 515.1406 0.3 515 353 (85), 191
(100), 179 (50),

135 (15)

Jaiswal et al., 2014;
Ouyang et al., 2018

12 II 17.3 coumaroyl-
glucoside

C21H24O9 419.1364 419.1348 −4.0 419 265 (100), 205
(60), 163 (55),
145 (50), 235

(25)

13 I 18.3 3,5-dicaffeoylquinic
acid

C25H24O12 515.1190 515.1195 0.9 515 353 (100), 335
(1), 191 (30),
179 (56), 173

(72)

Jaiswal et al., 2014

14 III 21.3 caffeoyl
deoxyhexosyl
glucoside

C27H34O14 581.1867 581.1876 1.3 581 161 (100), 435
(54), 487 (43),
179 (34), 203
(30), 427 (17),

235 (10)

15 III 21.7 caffeoyl
deoxyhexosyl
glucoside

C27H34O14 581.1877 581.1876 −0.3 581 161 (100), 435
(54), 487 (43),
179 (34), 203
(30), 427 (17),

235 (10)

deoxyhexose), and m/z 427 and 346, with a deoxyhexose attached
at C-4 of the glucose (Supplementary Figure S1).

EAF Induces Oxidative Burst and Lipid
Peroxidation
Ethyl acetate fraction resulted in a significant increase of
ROS (C. gattii 1 h, no treatment: 0.014 ± 0.0003 AU/CFU
(arbitrary units of fluorescence/colony forming unit), EAF:
0.021 ± 0.0001 AU/CFU, AMB: 0.038 ± 0.0007 AU/CFU;

C. gattii 24 h, no treatment: 0.053 ± 0.006 AU/CFU, EAF:
0.093 ± 0.003 AU/CFU, AMB: 0.101 ± 0.003 AU/CFU;
C. neoformans 1 h, no treatment: 0.014 ± 0.0001 AU/CFU,
EAF: 0.022 ± 0.0004 AU/CFU, AMB: 0.026 ± 0.0004 AU/CFU;
C. neoformans 24 h, no treatment: 0.052 ± 0.001 AU/CFU,
EAF: 0.094 ± 0.002 AU/CFU, AMB: 0.098 ± 0.004 AU/CFU;
P < 0.05) (Figures 3A,B) and peroxynitrite (C. gattii 1 h, no
treatment: 0.071± 0.001 AU/CFU, EAF: 0.010± 0.001 AU/CFU,
AMB: 0.177 ± 0.005 AU/CFU; C. gattii 24 h, no treatment:
0.156 ± 0.002 AU/CFU, EAF: 0.330 ± 0.015 AU/CFU, AMB:
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FIGURE 3 | Amounts of reactive oxygen (A,B) and nitrosative (C,D) species peroxynitrite induced by EAF and AMB (positive control) against Cryptococcus gattii
(A–C) and Cryptococcus neoformans (B–D) within 1 and 24 h. The results are expressed in arbitrary units of fluorescence (AU). Data are represented as the
mean ± SEM of two independent experiments in triplicate assays. An asterisk represents statistical differences between the treatments and the control (P < 0.05).
EAF, ethyl acetate fraction; NT, no treatment; AMB, amphotericin B; MIC, minimal inhibitory concentration; ROS, reactive oxygen species; RNS, reactive nitrogen
species.

FIGURE 4 | Reduction of lipid peroxidation and ergosterol content are consequences of the treatment with EAF of Xylosma prockia. Amount of TBARS in
Cryptococcus gattii and Cryptococcus neoformans cells after 24 h of EAF or HP (positive controls) treatment. The results are expressed in nanomolars per gram (A).
Ergosterol levels of cells from C. gattii and C. neoformans after 24 h of EAF or FLC (positive control) treatments. Results are expressed in micrograms per milliliter per
gram (B). Data of these two experiments are represented as the mean ± SEM of two independent experiments in triplicate assays. An asterisk represents statistical
differences between the treatments and the control (P < 0.05). EAF, ethyl acetate fraction; NT, no treatment; FLC, fluconazole; HP, hydrogen peroxide; MIC, minimal
inhibitory concentration; TBARS, thiobarbituric acid-reactive substances.

0.357 ± 0.016 AU/CFU; C. neoformans 1 h, no treatment:
0.061 ± 0.002 AU/CFU, EAF: 0.086 ± 0.004 AU/CFU, AMB:
0.116 ± 0.004 AU/CFU; C. neoformans 24 h, no treatment:
0.275 ± 0.024 AU/CFU, EAF: 0.443 ± 0.027 AU/CFU, AMB:
0.445 ± 0.032 AU/CFU; P < 0.05) levels (Figures 3C,D) in
C. gattii and C. neoformans 1 and 24 h following incubation.

A similar stimulated effect was observed for EAF on the
TBARS levels of C. gattii (no treatment: 5,008 ± 1,119 nM·g−1,
MIC EAF: 14,933 ± 2,493 nM·g−1, 2 × MIC EAF:
26,272 ± 7,396 nM·g−1, HP: 53,856 ± 6,308 nM·g−1;
P < 0.05) (Figure 4A) and C. neoformans (no treatment:
9,785 ± 3,667 nM·g−1, MIC EAF: 21,503 ± 4,504 nM·g−1,
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2 × MIC EAF: 41,563 ± 5,096 nM·g−1, HP:
42,674 ± 4,563 nM·g−1; P < 0.05) (Figure 4B), in comparison
with vehicle-treated cells.

EAF Does Not Affect Mitochondrial
Membrane Potential
Next, we attempted to analyze the effects of EAF in 19m using
an assay based on the uptake and retention of Rho 123. The
results of cells incubated for 24 h demonstrated no significant
differences between EAF-treated cells and cells without treatment
(P > 0.05) (Supplementary Figure S2).

EAF Impairs Cell Membrane
Ethyl acetate fraction promotes significant reduction of ergosterol
content in Cryptococcus cells when treated with 1 × MIC and
2×MIC of EAF (C. gattii, no treatment: 94.78± 6.58 mg/L·g−1,
MIC EAF: 69.30 ± 4.371 mg/L·g−1, 2 × MIC EAF:
56.95 ± 2.85 nM·g−1, FLC: 53.85 ± 6.30 nM·g−1; P < 0.05)
(C. neoformans, no treated: 55.39 ± 4.01 mg/L·g−1, MIC EAF:
42.08 ± 3.97 mg/L·g−1, 2 × MIC EAF: 26.02 ± 1.38 nM·g−1,
FLC: 31.65± 1.04 nM·g−1; P < 0.05) in both species (Figure 4B).

Interestingly, cells treated with subinhibitory concentrations
of EAF had membrane damages, with less CFSE
death (C. gattii, no treatment: 27.75 ± 1.51 AU, EAF:
9.92 ± 0.44 AU; P < 0.05) (C. neoformans, no treatment:
29.90 ± 1.52 AU, EAF: 10.50 ± 0.50 AU; P < 0.05)
(Figure 5A). These results indicate that the EAF causes
cell membrane impairment, with a reduction in the
amount of ergosterol.

It is important to note that the results of the assays with
sorbitol showed no alterations of MIC when Cryptococcus cells
were exposed to the osmotic protector sorbitol (Lee and Kim,
2016), indicating that damaging effects of the EAF cannot be
recovered in the presence of osmoprotectants such as sorbitol.

Morphological Alterations
Following the results obtained, we researched the ability
of C. gattii and C. neoformans of adapting to the stress
caused by EAF through changing morphometric parameters.
Morphometric analysis showed that cells exposed to
subinhibitory concentrations of EAF have a significantly
reduced surface/volume (S/V) ratio for C. gattii (no treatment:
1.24 ± 0.02 S/V, EAF: 1.36 ± 0.02 S/V; P < 0.05) and
C. neoformans (no treatment: 1.25 ± 0.02 S/V, EAF:
1.41 ± 0.02 S/V; P < 0.05) (Figures 5B,E) strains. No
alterations for capsule size measurements (P > 0.05) were
observed (Figure 5C).

No changes were observed in the cellular superficial charges
in comparison to the control growth (P > 0.05) (Figure 5D).
These results corroborate capsule analyses, since the capsule
polysaccharides contribute considerably to the negative cell
charge (Johnston and May, 2013).

Thermodynamics Data
Aiming to analyze the molecular interactions between the EAF
and cryptococcal cells, in this process, enthalpy changes were
determined by ITC. Figure 6 shows that the interaction of the
EAF with cryptococcal cells did not cause alterations in enthalpy,
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FIGURE 6 | Ethyl acetate fraction (EAF) did not interact significantly with the
surface of cryptococcal cells. Calorimetric titration curve for the dilution of
concentrated EAF into saline solution (control) (blue square), Cryptococcus
gattii (black squares), and Cryptococcus neoformans. Each titration
experiment consisted of 51 successive injections of 5 µl of EAF at 1,000 mg/L
in 1.5 ml of cell suspension at 1 × 106 CFU/ml.
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FIGURE 7 | Ethyl acetate fraction cytotoxicity assay. Each bar represents the
mean + standard deviation of the percentage of cell viability expressed in
percentage of our independent experiments performed in triplicate
considering the viability of untreated cells as 100%. *Statistical significance
(P > 0.05). EAF, Ethyl acetate fraction; NT, No treatment; HP, Hydrogen
peroxide.

since the values of the test groups were similar to those of the
blank experiment (EAF in saline).

Cytotoxicity Assay
MTT assay was performed in order to examine the cytotoxic
effect of the EAF against PBMCs. These cells were treated with

EAF in different concentrations, ranging from 4 to 512 mg/L.
No significant cytotoxic effect was observed in normal PBMC at
concentrations from 4 to 32 mg/ml (Figure 7).

DISCUSSION

Our results showed promising values of MIC for EAF against
C. gattii and C. neoformans, since values ranged from 0.5 to
16 mg/l for both species. According to Ríos and Recio (2005),
concentrations below 100 µg/ml for extracts and below 10 µg/ml
for isolated compounds can be considered promising sources of
substances with antimicrobial activity, opening new possibilities
for the discovery of active molecules for the treatment of fungal
infections. Newman and Cragg (2016), in a study evaluating the
origin of drugs approved by the Food and Drug Administration
(FDA) in the last 34 years, indicate that among the 221 new
antimicrobials approved in that period, about 67% are related
to natural products. Since currently available antifungal drugs
do not fully meet the clinical needs either for the development
of resistance or for high toxicity, it is necessary to continuously
search for new chemical entities for the treatment of infections.
In this context, natural products and derivatives are an invaluable
source of substances with biological potential.

The MFC values of EAF against C. gattii and C. neoformans
were similar to MIC values, ranging from 2 to 16 mg/L
(Figure 2A), with an MFC/MIC ratio between 1 and 2. These
results for antifungal tests or assays suggest that the EAF had a
fungicidal effect on all tested yeasts strains (Peixoto et al., 2017).
Time–kill curves demonstrated that the EAF kills cryptococcus
cells in a time–concentration-dependent manner, similar to what
can be seen in time–kill curves of AMB described by Burgess
and Hastings (2000) and Cantón et al. (2004). It is important to
note that no significant cytotoxic effect was observed in normal
PBMCs in concentrations from 4 to 32 mg/ml that significantly
affected cryptococcal cells (MIC ranged from 1 to 8 mg/L),
suggesting that the effect of the EAF was more selective for
yeasts than for PBMCs.

Another important point is that the analysis of the
combination between FLC/AMB and EAF in vitro suggests that
EAF does not impair the action of these drugs, but more studies
are necessary to confirm this hypothesis.

To our knowledge, there are no studies about antimicrobial
activity of X. prockia leaves, and there are just a few
concerning other species of Xylosma, and these are limited
to MIC evaluation. The antimicrobial activity of aqueous and
alcoholic extracts of Xylosma longifolium leaves was observed
against Staphylococcus aureus, Bacillus subtilis, and Candida
albicans (Parveen and Ghalib, 2012). Other authors showed that
X. longifolium methanol leaf extract has an inhibitory effect
against Trichophyton ajelloi MTCC 4878 (140.62 mg/L) (Devi
et al., 2013), with a much higher MIC than that observed for the
EAF of X. prockia in our study (≤16 mg/ml).

Our results pointed that X. prockia EAF has hydroxycinnamic
acid derivatives as majority compounds. Interestingly, although
phenolic compounds are usually reported as free radical
scavengers, our data demonstrate that EAF stimulates the
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production of intracellular oxidative and nitrosative species in
cryptococcal cells. After 1 and 24 h of treatment with EAF, a
significant oxidative burst was observed, but no modifications
in mitochondrial membrane potential (Supplementary Figure
S3) of yeast cells from both species. It is important to
note that the straight connection between the ROS and the
mitochondrial membrane potential is absent (Zhang et al.,
2015). Several studies demonstrated that polyphenols can act as
prooxidants under certain conditions, producing free radicals
and causing cell injury (Eghbaliferiz and Iranshahi, 2016). The
prooxidant activity of hydroxycinnamic acids was observed in
the presence of Cu(II) with DNA damage (Zheng et al., 2008).
It has been shown that curcumin- and resveratrol-mediated
apoptosis is related to the increase in the concentrations of
ROS (Heo et al., 2018). Epigallocatechin gallate from green tea
can cause oxidative stress-related responses in Saccharomyces
cerevisiae and can produce H2O2 in a weak alkaline medium
(Maeta et al., 2007).

Therefore, we verified if EAF could induce lipid peroxidation
in cryptococcal cells. TBARS levels were significantly high
when both yeasts were treated with this fraction. The literature
demonstrated considerable differences between these two species
concerning the adaptation to stress condition (Jain and Fries,
2008; Hansakon et al., 2019). For example, Hamilton and
Holdom (1997) demonstrated that Cu and Zn superoxide
dismutase activity was present in supernatants of stationary-
phase cultures of C. neoformans isolates, but undetectable in
culture supernatants from C. gattii isolates.

We then assessed the ability of the EAF to modify
the cryptococcal membrane. The lipid composition of the
fungal cell membrane is predominantly composed of sterols,
glycerophospholipids, and sphingolipids, and this structure is the
most common target of anticryptococcal drugs (Sant et al., 2016).
Interestingly, we observed that EAF impairs the cell membrane
(Figure 5A), with a reduction of ergosterol content (Figure 4B).
It is important to note that experiments with sorbitol indicate that
this osmotic protectant does not impair the activity of the EAF
against yeasts, since the MIC did not vary.

As far as we know, there is no study on the effect of
phenolic acid derivatives on the ergosterol composition
or biosynthesis, but data about mode of action of several
other phenolic compounds provide some clues. Eugenol,
methyl-eugenol, epigallocatechin-3-gallate, thymol, and
carvacrol cause a reduction in ergosterol amounts in Candida,
affecting the cell membrane (Navarro-Martínez et al., 2006;
Ahmad et al., 2010, 2011).

To better understand how cryptococcal cells adapt to EAF
stress, we performed some experiments exposing yeasts cells in
subinhibitory concentrations of EAF (0.5 ×MIC). EAF induced
damage to the cell membrane and diminished its size with an
increase in the S/V ratio. Cryptococcus cells are plastic, since they
can modify their morphotypes (yeast, pseudohypha, or hypha)
or sizes (micro or giant cells), depending on environmental
factors (Navarro-Martínez et al., 2006; May et al., 2016). Small
cells, and, consequently, the high S/V ratio, adapt quickly to
changes in stress conditions. Researchers observed that small
cells were adapted for growth in the presence of macrophages

(Feldmesser et al., 2001), azoles (Nosanchuk et al., 1999; Ferreira
et al., 2015), AMB (Nosanchuk et al., 1999), and terbinafine
(Guerra et al., 2012). However, other studies have shown that
capsule growth has a high energy cost for the cell (Ferreira et al.,
2015), and this can explain why the cells do not expand the
capsule in the presence of EAF. Due to the capsule’s contribution
to the negative charge of Cryptococcus cells (Nosanchuk and
Casadevall, 1997), we did not find alterations in the ZP.

The binding forces between molecules and ligands may
include electrostatic interactions, hydrogen bonds, Van der Waals
interactions, and hydrophobic interactions. Thermodynamic
parameters of the binding reactions reveal a valuable insight into
the types of forces involved (Du et al., 2016). Our thermodynamic
ITC data showed very low differences of enthalpies between
EAF/yeasts and EAF/blank titrations, demonstrating that
molecular interactions between the EAF and the surface
of cryptococcal cells are very weak. This suggests that cell
death caused by EAF in C. gattii and C. neoformans might be
mainly mediated by intracellular target(s), probably through
oxidative burst. However, further studies are needed to confirm
this hypothesis.
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