1,558 research outputs found

    Use of high-dimensional spectral data to evaluate organic matter, reflectance relationships in soils

    Get PDF
    Recent breakthroughs in remote sensing technology have led to the development of a spaceborne high spectral resolution imaging sensor, HIRIS, to be launched in the mid-1990s for observation of earth surface features. The effects of organic carbon content on soil reflectance over the spectral range of HIRIS, and to examine the contributions of humic and fulvic acid fractions to soil reflectance was evaluated. Organic matter from four Indiana agricultural soils was extracted, fractionated, and purified, and six individual components of each soil were isolated and prepared for spectral analysis. The four soils, ranging in organic carbon content from 0.99 percent, represented various combinations of genetic parameters such as parent material, age, drainage, and native vegetation. An experimental procedure was developed to measure reflectance of very small soil and organic component samples in the laboratory, simulating the spectral coverage and resolution of the HIRIS sensor. Reflectance in 210 narrow (10 nm) bands was measured using the CARY 17D spectrophotometer over the 400 to 2500 nm wavelength range. Reflectance data were analyzed statistically to determine the regions of the reflective spectrum which provided useful information about soil organic matter content and composition. Wavebands providing significant information about soil organic carbon content were located in all three major regions of the reflective spectrum: visible, near infrared, and middle infrared. The purified humic acid fractions of the four soils were separable in six bands in the 1600 to 2400 nm range, suggesting that longwave middle infrared reflectance may be useful as a non-destructive laboratory technique for humic acid characterization

    QTLMAS 2009: simulated dataset

    Get PDF
    Background - The simulation of the data for the QTLMAS 2009 Workshop is described. Objective was to simulate observations from a growth curve which was influenced by a number of QTL. Results - The data consisted of markers, phenotypes and pedigree. Genotypes of 453 markers, distributed over 5 chromosomes of 1 Morgan each, were simulated for 2,025 individuals. From those, 25 individuals were parents of the other 2,000 individuals. The 25 parents were genetically related. Phenotypes were simulated according to a logistic growth curve and were made available for 1,000 of the 2,000 offspring individuals. The logistic growth curve was specified by three parameters. Each parameter was influenced by six Quantitative Trait Loci (QTL), positioned at the five chromosomes. For each parameter, one QTL had a large effect and five QTL had small effects. Variance of large QTL was five times the variance of small QTL. Simulated data was made available at http://www.qtlmas2009.wur.nl/UK/Dataset

    Comparison of analyses of the QTLMAS XIII common dataset. I: genomic selection

    Get PDF
    Background - Genomic selection, the use of markers across the whole genome, receives increasing amounts of attention and is having more and more impact on breeding programs. Development of statistical and computational methods to estimate breeding values based on markers is a very active area of research. A simulated dataset was analyzed by participants of the QTLMAS XIII workshop, allowing a comparison of the ability of different methods to estimate genomic breeding values. Methods - A best case scenario was analyzed by the organizers where QTL genotypes were known. Participants submitted estimated breeding values for 1000 unphenotyped individuals together with a description of the applied method(s). The submitted breeding values were evaluated for correlation with the simulated values (accuracy), rank correlation of the best 10% of individuals and error in predictions. Bias was tested by regression of simulated on estimated breeding values. Results - The accuracy obtained from the best case scenario was 0.94. Six research groups submitted 19 sets of estimated breeding values. Methods that assumed the same variance for markers showed accuracies, measured as correlations between estimated and simulated values, ranging from 0.75 to 0.89 and rank correlations between 0.58 and 0.70. Methods that allowed different marker variances showed accuracies ranging from 0.86 to 0.94 and rank correlations between 0.69 and 0.82. Methods assuming equal marker variances were generally more biased and showed larger prediction errors. Conclusions - The best performing methods achieved very high accuracies, close to accuracies achieved in a best case scenario where QTL genotypes were known without error. Methods that allowed different marker variances generally outperformed methods that assumed equal marker variances. Genomic selection methods performed well compared to traditional, pedigree only, methods; all methods showed higher accuracies than those obtained for breeding values estimated solely on pedigree relationship

    3D simulations of gas puff effects on edge plasma and ICRF coupling in JET

    Get PDF
    Recent JET (ITER-Like Wall) experiments have shown that the fueling gas puffed from different locations of the vessel can result in different scrape-off layer (SOL) density profiles and therefore different radio frequency (RF) coupling. To reproduce the experimental observations, to understand the associated physics and to optimize the gas puff methods, we have carried out three-dimensional (3D) simulations with the EMC3-EIRENE code in JET-ILW including a realistic description of the vessel geometry and the gas injection modules (GIMs) configuration. Various gas puffing methods have been investigated, in which the location of gas fueling is the only variable parameter. The simulation results are in quantitative agreement with the experimental measurements. They confirm that compared to divertor gas fueling, mid-plane gas puffing increases the SOL density most significantly but locally, while top gas puffing increases it uniformly in toroidal direction but to a lower degree. Moreover, the present analysis corroborates the experimental findings that combined gas puff scenarios-based on distributed main chamber gas puffing-can be effective in increasing the RF coupling for multiple antennas simultaneously. The results indicate that the spreading of the gas, the local ionization and the transport of the ionized gas along the magnetic field lines connecting the local gas cloud in front of the GIMs to the antennas are responsible for the enhanced SOL density and thus the larger RF coupling

    Intruder bands and configuration mixing in the lead isotopes

    Full text link
    A three-configuration mixing calculation is performed in the context of the interacting boson model with the aim to describe recently observed collective bands built on low-lying 0+0^+ states in neutron-deficient lead isotopes. The configurations that are included correspond to the regular, spherical states as well as two-particle two-hole and four-particle four-hole excitations across the Z=82 shell gap.Comment: 20 pages, 4 figures, accepted by PRC, reference added for section 1 in this revised versio

    Universality of Symmetry and Mixed-symmetry Collective Nuclear States

    Full text link
    The global correlation in the observed variation with mass number of the E2E2 and summed M1M1 transition strengths is examined for rare earth nuclei. It is shown that a theory of correlated SS and DD fermion pairs with a simple pairing plus quadrupole interaction leads naturally to this universality. Thus a unified and quantitative description emerges for low-lying quadrupole and dipole strengths.Comment: In press, Phys. Rev. Lett. 199

    Collision Chronology Along the İzmir‐Ankara‐Erzincan Suture Zone: Insights From the Sarıcakaya Basin, Western Anatolia

    Get PDF
    An edited version of this paper was published by AGU. Copyright 2019 American Geophysical Union.Debate persists concerning the timing and geodynamics of intercontinental collision, style of syncollisional deformation, and development of topography and fold‐and‐thrust belts along the >1,700‐km‐long Ä°zmir‐Ankara‐Erzincan suture zone (Ä°AESZ) in Turkey. Resolving this debate is a necessary precursor to evaluating the integrity of convergent margin models and kinematic, topographic, and biogeographic reconstructions of the Mediterranean domain. Geodynamic models argue either for a synchronous or diachronous collision during either the Late Cretaceous and/or Eocene, followed by Eocene slab breakoff and postcollisional magmatism. We investigate the collision chronology in western Anatolia as recorded in the sedimentary archives of the 90‐km‐long Sarıcakaya Basin perched at shallow structural levels along the Ä°AESZ. Based on new zircon U‐Pb geochronology and depositional environment and sedimentary provenance results, we demonstrate that the Sarıcakaya Basin is an Eocene sedimentary basin with sediment sourced from both the Ä°AESZ and SĂ¶ÄŸĂŒt Thrust fault to the south and north, respectively, and formed primarily by flexural loading from north‐south shortening along the syncollisional SĂ¶ÄŸĂŒt Thrust. Our results refine the timing of collision between the Anatolides and Pontide terranes in western Anatolia to Maastrichtian‐Middle Paleocene and Early Eocene crustal shortening and basin formation. Furthermore, we demonstrate contemporaneous collision, deformation, and magmatism across the Ä°AESZ, supporting synchronous collision models. We show that regional postcollisional magmatism can be explained by renewed underthrusting instead of slab breakoff. This new Ä°AESZ chronology provides additional constraints for kinematic, geodynamic, and biogeographic reconstructions of the Mediterranean domain

    Reflections on using a community-based and multisystem approach to transforming school-based intervention for children with developmental motor disorders

    Get PDF
    Evidence-based management of Developmental Coordination Disorder (DCD) in school-age children requires putting into practice the best and most current research findings, including evidence that early identification, self-management, prevention of secondary disability, and enhanced participation are the most appropriate foci of school-based occupational therapy. Partnering for Change (P4C) is a new school-based intervention based upon these principles that has been developed and evaluated in Ontario, Canada over an 8-year period. Our experience to date indicates that its implementation in schools is highly complex with involvement of multiple stakeholders across health and education sectors. In this paper, we describe and reflect upon our team’s experience in using community-based participatory action research, knowledge translation, and implementation science to transform evidence-informed practice with children who have DCD
    • 

    corecore