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Abstract Debate persists concerning the timing and geodynamics of intercontinental collision, style of
syncollisional deformation, and development of topography and fold-and-thrust belts along the
>1,700-km-long Izmir-Ankara-Erzincan suture zone (IAESZ) in Turkey. Resolving this debate is a necessary
precursor to evaluating the integrity of convergent margin models and kinematic, topographic, and
biogeographic reconstructions of the Mediterranean domain. Geodynamic models argue either for a
synchronous or diachronous collision during either the Late Cretaceous and/or Eocene, followed by Eocene
slab breakoff and postcollisional magmatism.

We investigate the collision chronology in western Anatolia as recorded in the sedimentary archives of the
90-km-long Saricakaya Basin perched at shallow structural levels along the IAESZ. Based on new zircon
U-Pb geochronology and depositional environment and sedimentary provenance results, we demonstrate
that the Saricakaya Basin is an Eocene sedimentary basin with sediment sourced from both the IAESZ and
Sogiit Thrust fault to the south and north, respectively, and formed primarily by flexural loading from
north-south shortening along the syncollisional S6giit Thrust. Our results refine the timing of collision
between the Anatolides and Pontide terranes in western Anatolia to Maastrichtian-Middle Paleocene and
Early Eocene crustal shortening and basin formation. Furthermore, we demonstrate contemporaneous
collision, deformation, and magmatism across the TAESZ, supporting synchronous collision models. We
show that regional postcollisional magmatism can be explained by renewed underthrusting instead of slab
breakoff. This new IAESZ chronology provides additional constraints for kinematic, geodynamic, and
biogeographic reconstructions of the Mediterranean domain.

Plain Language Summary The timeline of continent-continent collisions and the creation of
topography, volcanic activity, and thrust faults in Anatolia (Turkey) are highly debated.
Continent-continent collision occurs when oceanic crust between two continental plates has been entirely
consumed back into the Earth's interior along a subduction zone. Previous work in western Anatolia
suggests that 66-60 million years ago continent-continent collision was followed by catastrophic rupturing of
the sinking oceanic crust, a process known as slab breakoff. Numerical models and field observations
demonstrate that slab breakoff is followed by rebound and surface uplift of the overriding plate producing
local extension and interrupting sedimentation. By studying a syncollisional sedimentary basin, we
determined the sedimentary infill is 52-48 million years old and sourced from both continents, indicating
collision must have occurred prior to 52 million years ago. This timing validates previous predictions of
synchronous collision across western and central Turkey. Furthermore, the timing of basin infill directly
overlaps with the timing of proposed slab breakoff. Our observations and data contradict predictions of the
slab breakoff model making breakoff an unlikely candidate. Instead, we propose continued shortening and
collision as the cause for the co-occurrence of sedimentary basin formation, deformation, and volcanism
observed throughout western Turkey.
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1. Introduction

Anatolia is a complex mosaic of Gondwanan and Laurasian microcontinents that collided from the Late
Cretaceous through the Paleogene (Sengér & Yilmaz, 1981). Today, the >1,700-km-long Izmir-Ankara-
Erzincan suture zone (IAESZ) demarcates the Pontides in the north from the Anatolide-Tauride Block
(ATB) to the south (Figure 1). It is debated whether Pontide-ATB collision was synchronous or diachronous
along strike (Kaymakeci et al., 2003, 2009; van Hinsbergen et al., 2016). These different models resulted in
competitive paleogeographic scenarios requiring unique geodynamic (e.g., Pourteau et al., 2016) and biogeo-
graphic (Jones et al., 2018; Métais et al., 2017, 2018; Sen, 2013) reconstructions of the Mediterranean domain
and the broader Alpine-Zagros-Himalayan-Tibetan orogen. Synchronous collision models suggest contem-
poraneous collision in central and western Anatolia whereas diachronous collision models suggest westward
younging of collision and suturing across Anatolia (cf. section 2). In western Anatolia, the timing of Pontide-
ATB collision is poorly resolved, sometime in the Late Cretaceous, Paleocene, or Early Eocene (e.g., Pourteau
et al., 2016). Eocene slab breakoff is inferred from geochemical data (e.g., Altunkaynak, 2007; Dilek &
Altunkaynak, 2009; Ersoy, Akal, et al., 2017; Ersoy, Palmer, et al., 2017; Harris et al., 1994; Kasapoglu
et al., 2016; Yildiz et al., 2015) but is either not supported or unresolved in mantle tomography (e.g.,
Portner et al., 2018; van Hinsbergen et al., 2010) or topographic expression (e.g., Okay et al., 2001;
P. Ustadmer et al., 2009). Models consistent with collision or slab breakoff can be tested by examining the
stratigraphic record against the expected crustal response. Slab breakoff predicts surface uplift, erosion,
and local extension (e.g., Davies & von Blanckenburg, 1995; von Blanckenburg & Davies, 1995), whereas
continued underthrusting predicts shortening, basin development, and syntectonic sedimentation.

This study presents the first tectonostratigraphic analysis of the Saricakaya Basin in western Anatolia. We
refine depositional ages through volcanic zircon U-Pb geochronology, interpret depositional environments
from measured sections, and evaluate provenance through detrital zircon U-Pb geochronology and sand-
stone petrography. We use the Saricakaya Basin to appraise models of intercontinental collision and slab
breakoff in northwest Turkey and to discuss the implications of our results for geodynamic models of
the IAESZ.

2. Geological Context

2.1. Western Anatolian Tectonic Provinces

Northwestern Anatolia encompasses four major tectonic domains, including, from south to north, the
Tavsanli Zone, IAESZ, Sakarya Zone, and Istanbul Zone (Figures 1 and 2).

The ATB zones display distinct and varied metamorphic gradients (van Hinsbergen et al., 2016). The north-
ernmost zone is the Tavsanli Zone, a mélange of HP/LT blueschist- and eclogite-facies rocks (Okay, 2002).
Today, the Tavsanli Zone comprises, from highest to lowest structural levels, Eocene and Neogene siliciclas-
tic and volcanic rocks of the peripheral Eskisehir foreland basin, obducted Cretaceous ophiolites of the
IAESZ, metamorphosed Paleozoic basement, and Late Cretaceous and Eocene-early Oligocene granitoids
intruded into the ophiolites and basement (Harris et al., 1994; Okay et al., 1998; Okay & Whitney, 2010;
Sengiiler & Izladi, 2013; Sherlock et al., 1999). The HT/LP Kirsehir Block in central Anatolia (also known
as the Kirsehir Massif or Central Anatolian Crystalline Complex) is arguably either a distinct terrane (e.g.,
Goriir et al., 1984) or the lateral continuation of the Tavsanli Zone (van Hinsbergen et al., 2016; Plunder
et al., 2018; Yaliniz et al., 2000).

North of the Tavsanli Zone is a highly deformed accretionary prism of metamorphosed oceanic crust and for-
mer continental margin units termed the IAESZ. The IAESZ marks the former location of Tethyan oceans
that opened and closed in the Mesozoic-Paleogene (Sengdr, 1979, and references therein) and consists
mainly of ophiolitic mélange, serpentinite, blueschist, and amphibolite rocks (Okay et al., 2002; Okay &
Whitney, 2010; Plunder et al., 2013; Sarifakioglu et al., 2017).

The Sakarya Zone of the Pontides is directly north of the IAESZ. The two basement units in the Sakarya Zone
are (1) Central Sakarya Basement, composed of Precambrian to Paleozoic crystalline basement, metamor-
phosed continental units called the S6giit Metamorphics, and Carboniferous Sogiit granodiorites (also
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Figure 1. Generalized and simplified tectonic map of Anatolia (modified from Licht et al., 2017; Pourteau et al., 2013; van Hinsbergen et al., 2016, and references
therein). IAES = Izmir-Ankara-Erzincan suture; IPS = Intra-Pontide suture; ITS = Intra-Tauride suture.

termed Sogiit magmatics, Central Sakarya granite, and Saricakaya granitoid) (Kibici et al., 2010; Okay, 2000;
P. Ustaomer et al., 2012) and (2) the Permian-Triassic subduction-accretion Karakaya Complex composed of
metamorphic rocks, ophiolitic mélange, deformed flysch, and limestone (Okay, 2000; Okay & Gonciioglu,
2004; T. Ustadmer et al., 2016). Basement rock units are exposed in south directed thrust sheets and
overlain by a thick sequence of unmetamorphosed Jurassic-Miocene sedimentary and volcanic rocks,
which are well exposed in the Saricakaya and Central Sakarya Basins (Kasapoglu et al., 2016; Ocakoglu
et al., 2018; Yildiz et al., 2015). North of the IAESZ and Karakaya Complex is the Saricakaya Basin (SB), a
triangular sedimentary basin (~90 X 0 X 10 km) delimited to the north by the S6giit Thrust (also termed
Nallihan Thrust), a south directed, basement-involved thrust fault. The thrust fault juxtaposes SB
sedimentary units in the footwall under Central Sakarya Basement and Mesozoic-Cenozoic sedimentary
units belonging to the forearc-to-foreland Central Sakarya Basin (CSB; also termed the Mudurnu-Gyniik
Basin) in the hanging wall (Acikalin et al., 2015, 2016; Altiner et al., 1991; Ocakoglu et al., 2018; Okay
et al., 2001).

The controversial Intra-Pontide Suture Zone, now occupied by the North Anatolian Fault, demarcates the
northern extent of the Sakarya Zone from the Istanbul Zone (Akbayram et al., 2016; Robertson &
Ustadmer, 2004).

2.2. Evolution of the izmir-Ankara-Erzincan Suture Zone

Collision in central Anatolia involved three terranes: the Pontides, the Kirsehir Block (KB) and ATB
(Figure 1). Based on the wealth of data from central Anatolia, three different collision scenarios are envi-
saged. (1) In the diachronous promontory collision model, the KB was a promontory of the ATB. Initial colli-
sion of the apex of the KB in the latest Cretaceous preceded collision in western and eastern Anatolia
(Figure 3a; Floyd et al., 2000; Kaymakci et al., 2003; Meijers et al., 2010; Yaliniz et al., 2000). Ophiolitic belts
at the southern KB were from foreland-propagating thrust nappes from the IAESZ not an Intra-Tauride
Suture Zone. (2) In a second diachronous model, the soft-hard collision model, the KB was an isolated ter-
rane bounded to the north and south by subduction zones of debated polarity (Goriir et al., 1984, 1998;
Menant et al., 2016; Robertson et al., 2009). Incipient Pontides-KB “soft” collision in the Maastrichtian-
Paleocene was followed by the ATB colliding with southern KB at the Intra-Tauride Suture Zone in a
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Figure 2. Regional geologic map and schematic cross section of the southern Central Sakarya Basin, Saricakaya Basin, Izmir-Ankara-Erzincan suture zone, and
Eskisehir Basin (modified from Aksay et al., 2002; Duru & Aksay, 2002; Gedik & Aksay, 2002; Kasapoglu et al., 2016; Sengtiler & Izladi, 2013; Timur & Aksay,
2002; Turhan, 2002 & P. Ustadmer et al., 2012). IAESZ and Sogiit Thrust detrital zircon sample locations are labeled (including those from Campbell, 2017);
measured sections locations include SB detrital zircon and sandstone petrography samples (M = Mayislar sections, I = Igdir sections, K = Kapikaya sections, and O
= Ozank®0y sections). The Paleogene volcano-plutonic unit includes the Nallithan volcanic rocks and Tavsanli Zone plutons. See Figure 1 for location.

final, “hard” Eocene collision (Figure 3b; Kaymakci et al., 2009; Licht et al., 2017; Pourteau et al., 2010). The
presence of the Intra-Tauride Suture Zone is highly debated (Advokaat et al., 2014; Lefebvre et al., 2013;
Menant et al., 2016). In both diachronous models, Pontide-KB collision predated Pontide-ATB collision.
(3) The synchronous collision model suggests that the KB was the lateral continuation of the Tavsanli
Zone (Figure 3c). Contemporaneous Paleocene collision of Tavsanli-KB with the Pontides was followed by
a Miocene collision of the eastern ATB with the Pontides (Giirer et al., 2016; Giirer & van Hinsbergen,
2018; van Hinsbergen et al., 2016). Key to this model is the interpretation that contrasting metamorphic
grades between the KB and Tavsanli Zone resulted from NE verging oblique subduction of the KB into an
east dipping subduction zone (Lefebvre et al., 2013; Plunder et al., 2018). The synchronous model does not
advocate for or against an Intra-Tauride suture but allows for an oceanic basin separating the Tavsanli-KB
from the rest of the ATB.
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Figure 3. Simplified schematics of various IAESZ evolution models; see text for discussion. (a) Diachronous promontory collision model with the Kirsehir Block as a
promontory of the Anatolide-Tauride Block. (b) Diachronous soft-hard collision model with the Kirsehir Block as a distinct terrane bound to the north and south by
oceanic basins and subduction zones. (c) Synchronous collision model: the Kirgehir Block and Tavsanli Zone are connected to the entire ATB and subjected to
differing metamorphic conditions during subduction and ophiolite obduction. ATB = Anatolide-Tauride Block; IAESZ = {zmir-Ankara-Erzincan suture zone;
ITS = Intra-Tauride suture; KB = Kirsehir Block; Tav = Tavsanli Zone (part of ATB in a and b).

Several models have been proposed for the evolution of subduction and collision in western Anatolia
(Pourteau et al., 2016, and references therein). Regardless of which model is correct, most invoke two Late
Cretaceous subduction zones. In the north, the Sakarya Zone was an Andean-type margin (Ocakoglu
et al., 2018; Pourteau et al., 2016), with a volcanic arc occupying E-W trending Campanian extensional struc-
tures (Ocakoglu et al., 2018). In the south, an intraoceanic subduction zone was also active and eventually
obducted onto the Tavsanli Zone, which was itself subducted to blueschist and eclogite facies between 95
and 85 Ma (Okay et al., 1998; Plunder et al., 2013; Pourteau et al., 2010).

The absence of the KB in western Anatolia provides the perfect location to appraise competing Pontide-ATB
collisional scenarios. All models agree upon a latest Cretaceous-earliest Paleocene Pontide-KB collision.
Therefore, in western Anatolia, a latest Cretaceous-early Paleocene collision would support the synchronous
collision model, whereas finding a post-Paleocene collision would support a diachronous suturing model.
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2.3. Syncollisional Evolution

The timing of Tavsanli-Sakarya collision remains imprecise in the literature, with most citing a Late
Cretaceous-Eocene collision due to the CSB transition from flysch to molasse (e.g., Gonciioglu et al., 2000;
Okay et al., 1998, 2001; Pourteau et al., 2016). Acikalin et al. (2016) proposed an early collision at 71 Ma
due to the sudden influx of mafic material into the CSB. Yet changes in subduction dynamics or Tavsanl
Zone slab breakoff between 85 and 75 Ma (Okay & Whitney, 2010) could explain precollisional accretionary
prism uplift. On the other hand, collision was dated at ~61 Ma based on coeval uplift and an angular uncon-
formity at the southern CSB and prograding deltaic sequences deeper into the basin (Ocakoglu et al., 2018).

Collision is loosely constrained by structural relationships. Along the suture zone, Paleogene units are the
oldest to unconformably overlie both Karakaya Complex and accretionary mélange, indicating that thrust
faults juxtaposed the Karakaya Complex and mélange (Figure 2) sometime between deposition of the
Upper Cretaceous and lower Paleogene strata (Gonciioglu et al., 2000) and likely date the age of collision.
The east-west trending folds and thin-skinned thrust faults in the CSB and SB comprise the syncollisional
Eocene to Mio-Pliocene fold-and-thrust belt (e.g., Okay et al., 2001; Sahin et al., 2019). The most significant
thrust is a basement-involved structure, the S6giit Thrust, which has an along-strike length of ~150-km par-
allel to the suture zone. At its western end, the So6giit Thrust juxtaposes Central Sakarya Basement over the
Karakaya Complex and Mesozoic-Paleogene sedimentary units. Whereas in the east, Cenozoic sedimentary
and volcanic units are in the hanging wall and footwall. Based on a simple linear scaling relationship
between fault trace length and amount of displacement, it is reasonable to estimate 15 km of displacement
along the ~150-km-long Sogiit Thrust (Cowie & Scholz, 1992; Marrett & Allmendinger, 1991; Walsh &
Watterson, 1988). The Sogiit Thrust likely reactivated the paleosuture zone between the accreted Karakaya
Complex and the Pontide crystalline basement (Central Sakarya Basement) as there is no Karakaya
Complex exposed along the thrust or further north and no Central Sakarya Basement exposed south of the
thrust. It would be unlikely for convergent-margin deformation in the accretionary prism to be accommo-
dated along a lithospheric-scale structure like the Sogiit Thrust (e.g., Noda, 2016). Sahin et al. (2019) argue
that this fault was syncollisional and active by at least the Eocene but refined dating of the Sogiit Thrust
would fine-tune the collision age.

In most places in the SB, the thick Paleogene sedimentary sequence unconformably overlies the Karakaya
Complex (Figure 2; Gedik & Aksay, 2002). The basal Paleogene unit is dated from Early Paleocene to
Middle Eocene and given various names: the Mihalgazi Formation, including the Camakli Member
(Yildiz et al., 2015), Kabalar Formation, and Kizilgay Member/Group (Gedik & Aksay, 2002; Kasapoglu
et al., 2016). Uguz (2013) briefly describes and interprets this unit as debris flow, alluvial fan, flood plain,
and lacustrine limestone facies. Based on the rapid Paleocene-Eocene lateral facies changes and coeval mag-
matism, Gonctioglu et al. (2000) interpreted the SB as a transtensional basin. Conversely, mapping and struc-
tural analysis by Sahin et al. (2019) determined that Paleogene-Miocene units were deposited in a
contractional regime.

Volcanism migrated southward from the Late Cretaceous to Eocene (Ocakoglu et al., 2018). Eocene Nallthan
volcanic rocks are presently between 6- and 10-km north of the IAESZ, implying slab rollback or steepening
between the Late Cretaceous and Eocene, perhaps due to syncollisional slowing of the convergence velocity.
Here we remain consistent with the published body of literature by using the term “postcollisional” for
Eocene magmatism but include it within the “syncollisional” evolution because underthrusting and defor-
mation was active from at least the Cenomanian through Miocene (e.g., Sahin et al., 2019).

The tectonic setting and geodynamic implications of postcollisional magmatism is debated. There are three
belts of postcollisional magmatism in western Anatolia: (1) 54- to 48-Ma granodiorite plutons and associated
HP/LT metamorphism in the Tavsanli Zone (Figure 2) (Altunkaynak, 2007; Dilek & Altunkaynak, 2009;
Harris et al., 1994; Okay & Satir, 2006; Ozdamar et al., 2018), (2) 53- to 47-Ma basaltic to rhyolitic
Nallihan volcanic rocks in the SB and eastern CSB (Figure 2; Harris et al., 1994; Kasapoglu et al., 2016;
Yildiz et al., 2015), and (3) the Kizderbent belt of 53- to 38-Ma volcano-plutonic rocks ~80-km north of the
IAESZ (Altunkaynak, 2007; Ersoy, Akal, et al., 2017; Ersoy, Palmer, et al., 2017). Because the Kizderbent vol-
canic rocks exhibit different geochemical properties (Ersoy, Palmer, et al., 2017) and could belong to a differ-
ent subduction system (Okay & Satir, 2006), we only consider the Nallihan and Tavsanli igneous rocks.
Whole rock major and trace elements and Sr-Nd-Pb isotopic compositions of the Nallithan rocks indicate
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some fractional crystallization and crustal contamination, and mixture modeling supports increased asthe-
nospheric (Ersoy, Palmer, et al., 2017) or metasomatized mantle lithospheric sources (Altunkaynak, 2007).
The geochemistry, in addition to the linear geometry of the volcano-plutonic belt, the late Paleocene-early
Eocene transition from marine to terrestrial deposition (e.g., Okay et al., 2001), and a possible relict slab
interpreted from seismic tomography (e.g., Portner et al., 2018; van Hinsbergen et al., 2010) have led many
authors to conclude that slab breakoff or delamination processes generated the volcanism (Altunkaynak,
2007; Altunkaynak et al., 2012; Ersoy, Akal, et al., 2017; Kasapoglu et al., 2016; Yildiz et al., 2015).
However, P. Ustadmer et al. (2009) outlined the inconsistencies in the slab breakoff hypothesis, most notably
that magmatism from slab breakoff or delamination is emplaced into thickened and elevated crust, yet there
was Early-Middle Eocene marine deposition in the three foreland basins. Furthermore, new papers argue
that slab breakoff is amagmatic (Garzanti et al., 2018; Niu, 2017). Alternative hypotheses are that the
Tavsanli plutons and Nallthan volcanic rocks were derived from the mantle wedge or anatexis of the lower
continental crust (Harris et al., 1994; Okay et al., 1998), or that magmatism could be explained by migration
of the volcanic front toward the suture zone where the crust is thinner (Chapman et al., 2017).

All these different approaches yield contrasting results regarding the timing of Sakarya-Tavsanl collision
and syncollisional deformation and geodynamics. In this part of western Anatolia, the interpretation of slab
breakoff has not been tested outside of geochemical analyses. Provenance, deformation, and magmatism
have yet to be integrated into a broader model describing collisional evolution. Our work in the
Saricakaya Basin presents a new holistic model of suturing in this region of western Anatolia.

3. Methods
3.1. Sedimentology

To determine the Paleogene evolution of the Saricakaya Basin, we measured 13 stratigraphic sections at deci-
meter-to-meter resolution at four localities—Mayzslar, igdir, Kapikaya, and Ozankdy—in a ~130-km-wide
area between Saricakaya and Ozankdy (Figure 2), starting at the oldest exposure at the base of the
Paleogene series. We subdivide the basin fill into six units and designate informal member names. From
the measured sections, we construct a composite stratigraphic section. We describe the sedimentary facies,
group them into five main lithofacies, and interpret depositional environments. In our study area, the SB
is less than 10-km wide and the Sogtit Thrust has around 15 km of displacement, assuming simple displace-
ment-length scaling relationships (Cowie & Scholz, 1992). Therefore, our stratigraphic sections totaling 1.5
km likely do not reflect significant change in north-south position; in other words, we interpret stratigraphic
changes as temporal not spatial evolution because they do not represent any consequential upsection migra-
tion toward the thrust front.

3.2. Zircon U-Pb Geochronology

Zircon U-Pb geochronology is used to determine the age of SB sedimentary strata, provenance of the basin
sedimentary units, and signatures of potential sediment sources. We collected 12 samples along our strati-
graphic sections. Additionally, we analyzed two samples from the IAESZ and one from the S@giit Thrust
hanging wall to characterize the age distributions in these two potential source areas.

The zircon separation, mounting, LA-ICP-MS analysis, and data reduction follow the University of
Washington protocol (Licht et al., 2018). Zircons were separated by standard heavy mineral separation meth-
ods. A minimum of 140 grains per sample were randomly selected, mounted with standards (Black et al.,
2004; Eddy et al., 2016; Slama et al., 2008), and analyzed using a laser ablation-inductively coupled
plasma-mass spectrometer (LA-ICP-MS) at the University of Washington. The data were reduced with
Iolite using their Geochron Data Reduction Scheme to calculate U-Pb ages uncorrected for common lead
(Paton et al., 2011). Individual zircons with >20% discordance, >5% reverse discordance, or abnormal pat-
terns in raw signal intensity were excluded from analyses and interpretations (after Gehrels, 2012, 2014).
Crystallization ages of the volcaniclastic zircon samples were determined using TuffZirc (Ludwig, 2012).
Kernel density estimates were calculated using the plug-in adaptive bandwidth selection method (Botev
et al., 2010). Supporting information includes data and detailed analytical protocols.
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3.3. Sandstone Petrography

In addition to U-Pb geochronology, we evaluated the provenance of the SB strata from modal sandstone com-
positions determined through petrographic analysis. Thin sections from 25 fine- to coarse-grained sandstone
samples were prepared by National Petrographic Service, Inc. and at the University of Washington. Poorly
indurated samples were sieved, and the 63- to 250-um fractions were mounted in epoxy cups then made into
thin sections. At least 340 points per slide were counted using the Gazzi-Dickinson point-counting method
(Dickinson, 1985). Ternary diagrams were plotted using Triplot (Graham & Midgley, 2000) and interpreted
using typical provenance source fields (Dickinson, 1985; Dickinson et al., 1983; Dickinson & Suczek,
1979). Quartz grains include monocrystalline quartz (Qm) and polycrystalline quartz (Qp); feldspar grains
(F) include plagioclase and orthoclase; lithic fragments include metamorphic (Lm), sedimentary (Ls; chert,
mudstone, siltstone, and sandstone), and volcanic (Lv). Data Set S1 includes the modal data.

4. Results
4.1. Sedimentology of the Eocene Deposits in the Saricakaya Basin

We combined individual measured sections into a composite stratigraphic section (Figure 4). There are many
small reverse faults throughout the basin, so all measured thicknesses are minimum thicknesses measured
from continuous sections. In our study area, contacts between the Karakaya Complex, Jurassic limestone,
Cretaceous marine deposits, and Paleogene deposits were reactivated as thrust fault contacts. Growth strata
and paleocurrent indicators were not observed, primarily due to faulting, limited exposure, and advanced
weathering; weathering also made sedimentary structures difficult to observe. The clastic units are given
informal member names and are described from oldest to youngest in the following section: Basal
Conglomerate, Lower Lacustrine, Andesitic, Red, Lower Purple, Brown Conglomerate, and Upper
Lacustrine Members. We observed depositional contacts between all units (Figures S1-S4); thrust faults in
Figure 4 represent small faults observed in some measured section locations. The main lithofacies are synthe-
sized in Table 1.

The Basal Conglomerate Member unconformably overlies Karakaya Complex, Jurassic limestone, or thin
remnants of Late Cretaceous marine clastics (Gedik & Aksay, 2002; Timur & Aksay, 2002). The Basal
Conglomerate Member is mainly 1- to 3-m-thick massive sets of matrix- and clast-supported conglomerates
with very angular serpentinite, chert and greenschist clasts (LF1 in Table 1; Figure 5a). Weakly to strongly
calcareous brown mudstones, siltstones, and sandstones are interbedded with the conglomerates.

The base of the Lower Lacustrine Member is made of cross-bedded conglomerate beds interbedded
with strongly developed paleosols with root traces and carbonate nodules (LF2), sometimes forming 10- to
50-cm-thick caliches (LF3). The strata then grade into green and gray mudstones and siltstones (LF3),
interbedded with 50- to 100-cm-thick white, tabular, and continuous limestone beds (LF4), thick coarse
sandstones and isolated conglomerate lenses containing serpentinite, andesitic, and sparse greenschist
clasts (LF5).

The Lower Lacustrine Member is capped by the Andesitic Member, which is andesite-bearing volcanic con-
glomerate beds and massive andesite (Figure 5b). This member is overlain by the Red Member (Figures 5¢
and 5d), comprising thick red-brown mudstones with gray-green and brown mottling, carbonate nodules,
sparse root traces, and isolated greenschist and carbonate clasts (LF2). Typically, the mudstones are capped
by either a 50- to 200-cm-thick caliche with isolated clastic matrix (LF3) or 50- to 800-cm-thick tabular and
lenticular (5- to 10-m wide) conglomerate beds with clasts of serpentinite, andesite, carbonate, and chert
(LF5) (Figure 5d).

The Lower Purple Member is characterized by heavily mottled, carbonaceous purple mudstone (Figure 5e)
and siltstone with root traces and isolated clasts (LF2). These mudstones and siltstones are interbedded with
<50-cm-thick organic-rich mudstone and lignite and tabular to lenticular conglomerate and gravel with
well-rounded greenschist, quartz, chert, gneiss, schist, and carbonate clasts (LF5; Figure 5f).

The contact between the Lower Purple and Brown Conglomerate Member is an angular unconformity
(Figure 5g). The Brown Conglomerate Member is characterized by 1- to 12-m-thick packages of pebble to
boulder clast-supported, fining-upward, trough cross-bedded conglomerate with well-rounded clasts of
greenschist, carbonate, gneiss, schist, and quartz (LF5; Figures 5h and 5i). Conglomerate troughs are
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Figure 4. Composite stratigraphic section of the Saricakaya Basin with volcaniclastic zircon U-Pb ages. Fill colors correspond with informal members; sedimentary
structures symbols and the one fill pattern (carbonate) are defined in the legend. Here observed thrust faults are depicted; see Figures S1-S4 for depositional
contacts. The main depositional environment (DE) is given to the left. To the right of the stratigraphic column, histograms, and kernel density estimates (Botev et al.,
2010) display detrital zircon age distributions from this study and Campbell (2017). Histograms display all ages in 20-Myr bins in the right column and only ages
<500 Ma in 10-Myr bins on the left. Gray arrows connect detrital zircon data to their respective stratigraphic location.

interbedded with mudstones, siltstone, and sandstone with root traces, mottling, pedogenic carbonate
nodules, and 50- to 150-cm-thick caliche horizons (LF2; Figure 5j).

The Brown Conglomerate Member vertically transitions into the Upper Lacustrine Member (Figure 5k).
Brown-gray mudstone and siltstones with root traces, mottling, pedogenic carbonate nodules (LF2), and
50- to 300-cm caliche (LF3) characterize the basal Upper Lacustrine Member. Additionally, trough cross-
bedded conglomerates with quartz, gneiss, greenschist, and carbonate clasts are present (LF5). The top of
the Upper Lacustrine Member is red-brown planar laminated very fine, mature (quartz, mica) sand inter-
bedded with mudstone with small, wavy ripples, trough cross lamination, load casts, mudcracks, and trace
fossils (Figures 51 and 5m), as well as 5- to 20-cm thick, continuous tabular limestone beds (LF4).
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Table 1
Main Lithofacies Identified in the Saricakaya Basin
Depositional
environment
Lithofacies Description Members present interpretation
LF1 Clast- Clast-supported, massive conglomerate unit of 1- to 3-m plurimetric sets Basal Conglomerate Alluvial fan
supported with very angular, 15- to 100-cm clasts; erosive base; laterally extensive;
conglomer- occasionally matrix supported
ate
LF2 Red-brown Red-brown mudstone; structureless, massive, and laterally extensive; root Lower Lacustrine, Red, Lower Pedogenized
mudstone traces, carbonate nodules, isolated clasts, and gray-green to brown Purple, Upper Lacustrine overbank
mottling; ~1- to 8-m thick; commonly coarsen upward to silt or fine deposits

LF3 Caliche

LF4 Tabular
limestone

LF5 Trough cross-
bedded
conglomer-
ate

sand and capped by caliche
10- to 200-cm thick, nodular, massive carbonate horizon, often with isolated Lower Lacustrine, Red, Lower Paleosol Bk to K
clastic matrix Purple, Brown Conglomerate, horizon

Upper Lacustrine

White, tabular, laminated to massive, laterally continuous limestone; 5- to Lower Lacustrine, Upper Lacustrine Lacustrine

100-cm thick; afossiliferous limestone
Pebble- to boulder-sized, clast-supported, well-rounded, trough cross- Lower Lacustrine, Lower Purple, River channels

bedded conglomerate; 1- to 12-m-thick lenticular troughs with erosive Brown Conglomerate, Upper

base and coarse basal lag that commonly fines upward to coarse sand to Lacustrine

cobble conglomerate

Note. Lithofacies numbers correspond to those in the text.

4.2. Volcaniclastic Zircon U-Pb Ages

We present the ages of SB volcaniclastic samples in Table 2 and their stratigraphic location in Figure 4. We
also include one volcaniclastic sample from Campbell (2017). Volcaniclastic layers are massive, gray-green
mudstones predominantly composed of feldspar, which we interpret as weathered pyroclastics (LF3).
Zircon grains are angular to rounded, predominantly euhedral, tabular to prismatic, and some grains are bro-
ken. The age spectra reveal a single age population (Figure S5; after Vermeesch, 2018) interpreted to reflect a
single provenance tied to an eruption event rather than a mixed provenance reflecting recycling from multi-
ple age source areas.

Together, the results constrain deposition of the Basal Conglomerate through Red Members to 52.4
through 48.0 Ma (Figure 4). Results refine the age of these strata as lower Eocene (Ypresian), previously
described as upper Paleocene to lower Eocene (Gedik & Aksay, 2002; Yildiz et al., 2015). Deposition was
coeval with 53- to 47-Ma Nallithan volcanism (Kasapoglu et al., 2016). Maximum depositional ages from
sandstones (cf. section 4.3) were also calculated and are compatible with volcaniclastic ages without bringing
any additional constraint so are not provided. The age of the Lower Purple through Upper Lacustrine
Members is poorly constrained due to the absence of volcanic layers and young zircons. However, laterally
correlative deposits in the eastern SB are interbedded with 51.7- to 44.7-Ma lavas and tuffs (Kasapoglu
et al., 2016; Sahin et al., 2019). Therefore, we suspect that our SB sections extend into the middle Eocene.

4.3. Detrital Zircon U-Pb Ages

Detrital zircon grains from eight SB samples (n = 759) yielded ages with acceptable concordance and preci-
sion for geochronologic interpretation. Within each sample, zircon grains vary from angular to rounded and
euhedral to anhedral, and some contain inclusions. The results, plus two detrital samples (n = 242) from
Campbell (2017), are presented in their stratigraphic position in Figure 4. The 16SKY04 has a prominent
Ypresian peak and minor Jurassic, Triassic, and Carboniferous age peaks. The 16SKY23 has a prominent
Ypresian age peak. The 16SKY26 has prominent Jurassic, Triassic, and Carboniferous age peaks and a minor
Devonian age peak. The 15YP08 has broad Permian-Devonian and Silurian-Ordovician age peaks. The
16SKY37 has a broad Phanerozoic age peak centered around the Triassic-Carboniferous. The 15YP09 has
Ypresian, Carboniferous, and Devonian age peaks. The 16SKY42 has broad Jurassic and Devonian age peaks.
The 170ZKO05 displays a broad peak centering around the late Neoproterozoic. The 170ZK12 only has one
broad peak centering around the Devonian and no zircons younger than the earliest Cretaceous. All samples
except 16SKY04, 16SKY23, and 170ZK12 have late Neoproterozoic (~600 Ma) and late Mesoproterozoic
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Figure 5. Field photographs. (a) Basal conglomerate member with poorly sorted, angular to rounded andesitic and weathered greenschist clasts (LF1). (b) Andesitic
Member (sample 16SKY18). (c) View of the Red Member looking toward the west (predominantly LF2) and (d) photograph of lenticular coarse sand to cobble
conglomerate with clasts of ophiolitic material, andesite, carbonate, and chert in the Red Member (LF5). (e) Mottled, carbonaceous purple mudstone (LF2/3), and (f)
well-rounded to subrounded greenschist, chert, and serpentinite clasts in the Lower Purple Member. (g) View looking toward the north of the Red, Lower Purple,
and Brown Conglomerate Members in the Kapikaya Section. (h) Coarse sand-sized clasts of greenschist, carbonate, gneiss, chert, and quartz in the Brown
Conglomerate Member, (i) a trough cross-bedded channel body with rounded boulders (LF5) eroded into a pedogenized brown mudstone (LF2), and (j) a stacked
caliche horizon (LF3). (k) View looking toward the west of the Upper Lacustrine Member with laterally continuous, tabular lacustrine limestones (LF5), including
(1) mudcracks and (m) trace fossils.

(~1,000 Ma) age zircons. All samples except the two oldest (16SKY04 and 16SKY23) have various minor
Paleoproterozoic-late Archean age peaks.
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Table 2

Volcaniclastic Zircon U-Pb Ages From the Saricakaya Basin

Sample name Source Age (Ma) +20 abs +20 abs incl. modeling error MSWD Member No N
15YP11 Campbell (2017) 52.4 0.6 0.8 0.99 Basal Conglomerate Mbr 98 56
16SKY11 this study 49.6 0.1 0.7 1.30 Lower Lacustrine Mbr 108 20
16SKY18 this study 48.7 0.2 0.7 0.51 Lower Lacustrine Mbr 24 24
16SKY17 this study 48.1 1.3 1.4 0.09 Andesitic Mbr 27 14
16SKY24 this study 48.0 1.2 1.4 0.28 Red Mbr 8 8

Note. Mean square weighted deviation (MSWD) reflects the degree to which the calculated age and uncertainty are representative of a single population. We pro-
vide the 2 o error with and without the 1.3% modelling error (see Text S1 for discussion). 15YP11 is from Campbell (2017); Ny is the total number of grains; N is the
number of grains used in weighted mean age calculation.

The apparent temporal trends in SB samples are the appearance of Precambrian age peaks starting at the top
of the Red Member (16SKY26; after 48.0 Ma), the appearance of Late Cretaceous age zircons starting at the
top of the Lower Purple Member, and the disappearance of <120- and >2,000-Ma zircons at the top of the
Upper Lacustrine Member (170ZK12). These trends are not associated with any trend in depositional envir-
onments. A multidimensional scaling map, a visual assessment of misfit between age distributions, is pro-
vided in the Supporting Information (Figure S6; Vermeesch, 2013).

We present new (n = 223) and include previously published zircon U-Pb data (n = 769) to characterize
provenance source regions (Table 3 and Figure 6). Sample 15YP12, a Karakaya Complex schist, has one
prominent Carboniferous age peak (Campbell, 2017). Sample KK.10 is a sandstone sample from the
Upper Karakaya Complex in our study region and has prominent late Carboniferous-early Permian and
Triassic age peaks (T. Ustadmer et al., 2016). New modern river samples drain the accretionary prism
mélange: 17RIVERO1 contains minor Carboniferous, Permian, Triassic, and Eocene age peaks, and
16ESKO1 has a prominent Carboniferous age peak. Together these samples characterize the IAESZ age
distribution. Samples north of the basin characterize the zircon signature of sediment derived from the
Sogiit Thrust hanging wall. The sample included from (P. Ustadmer et al., 2012; named here SgtMeta),
a sillimanite-garnet schist from Central Sakarya Basement, contains only zircons older than 500 Ma,
with two prominent Neoproterozoic age peaks. The 17BASEO1 is a new gneiss sample from the Sogiit
Metamorphics and has one prominent Ordovician peak. Together, SgtMeta and 17BASEO1 characterize
the Central Sakarya Basement signature. Central Sakarya Basin detrital sandstone samples from Ocakoglu
et al. (2018) and Campbell (2017) are included to characterize the sedimentary strata of the S6giit Thrust
hanging wall that could be reworked and deposited in the SB. Jurassic 15YP04 has one Carboniferous age
peak, Upper Cretaceous sample 15YP13 contains one prominent Campanian peak, and Upper Cretaceous
15G002 and Paleocene-Eocene(?) 15YP14 have a prominent Campanian age peaks and a minor
Carboniferous peak.

Next, we grouped all samples by location—north (Ségiit Thrust hanging wall) and south (IAESZ) of the SB—
to evaluate the similarity and relative contribution of each source area to the SB strata (Figure 7). Therefore,
we plot both all S6giit Thrust hanging wall samples and only Central Sakarya Basement samples (no
Mesozoic-Cenozoic sedimentary samples), and all JAESZ samples and only Karakaya Complex samples.
The Central Sakarya Basement has characteristic age peaks >450 Ma. The signal from the Late Cretaceous
arc is unique to the Upper Cretaceous and Paleo-Eocene(?) sedimentary samples in the S6giit Thrust compi-
lation. The Triassic age peak is characteristic of the Karakaya Complex.

4.4. Sandstone Petrography

The modal framework grain composition of 25 SB samples is shown in four ternary diagrams (Figure 8).
The majority of samples classify as lithic, quartzo-lithic, and litho-quartzose sandstones with <10% feld-
spar and varying proportions of quartz and lithic grains (after Garzanti, 2018); three lower lacustrine
member samples contain larger proportions of feldspar. Most samples plot within the recycled orogen
and magmatic arc province fields. The Red through Upper Lacustrine Members display a trend of increas-
ing proportions of monocrystalline and polycrystalline quartz. On average, accessory minerals, including
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Table 3
Detrital Zircon U-Pb Samples From This Study and From Previously Published Sources Categorized by Provenance Source Regions
Sample
name Source Provenance category Stratigraphic unit and lithology
15YP12 Campbell (2017) IAESZ Upper Karakaya Complex greenschist
KK.10 T. Ustadmer et al. (2016) TIAESZ Upper Triassic Kendirli Fm (Karakaya Complex) sandstone
17RIVERO1 this study TAESZ Modern river sand draining the accretionary prism into Saricakaya
Basin
16ESK01 this study IAESZ Modern river sample draining accretionary prism and Karakaya
Complex
16SKY04 this study Saricakaya Basin Basal Conglomerate Mbr sandstone
16SKY23 this study Saricakaya Basin Red Mbr sandstone
16SKY26 this study Saricakaya Basin Red Mbr sandstone
15YP08 Campbell (2017) Saricakaya Basin Lower Purple Mbr sandstone
16SKY37 this study Saricakaya Basin Lower Purple Mbr sandstone
15YP09 Campbell (2017) Saricakaya Basin Brown Conglomerate Mbr sandstone
16SKY42 this study Saricakaya Basin Brown Conglomerate Mbr sandstone
16SKY50 this study Saricakaya Basin Upper Lacustrine Mbr sandstone
170ZK05 this study Saricakaya Basin Upper Lacustrine Mbr sandstone
170ZK12 this study Saricakaya Basin Upper Lacustrine Mbr sandstone
SgtMeta P. Ustadmer et al. (2012) Sogiit Thrust Hanging Central Sakarya Basement sillimanite-garnet schist
Wall
17BASEO1 this study Sogiit Thrust Hanging Gneiss from the S6giit Metamorphics
Wall
15YP04 Campbell (2017) Sogiit Thrust Hanging Jurassic Bilecik Fm sandstone
Wall
15YP13 Campbell (2017) Sogiit Thrust Hanging Upper Cretaceous Yenipazar Fm sandstone
Wall
15G002 Campbell (2017) and Ocakoglu et al. Sogut Thrust Hanging Upper Cretaceous Yenipazar Fm conglomerate
(2018) Wall
15YP14 Campbell (2017) Sogiit Thrust Hanging Paleogene Kizilcay Fm sandstone
Wall
epidote, white mica, biotite, zircon, serpentine, amphibole, calcite, and opaque minerals, comprise 10%—
30% of total framework grains.
5. Interpretation
5.1. Depositional Environments
The Saricakaya Basin sedimentary facies reflect three main depositional environments: alluvial fan, fluvial
(channels and floodplain), and lacustrine. There is no evidence for marine deposition.
Laterally extensive, clast-supported, massive conglomerate beds with very angular clasts and an erosive base,
interbedded with medium-to-coarse sandstone and mudstone, are interpreted as debris flow deposits on allu-
vial fans (LF1; Table 1; Nichols, 2009; Prothero & Schwab, 1996). Massive, matrix-supported conglomerates
are interpreted as proximal fluvial and sheetflood deposits within alluvial fans (LF1; Nichols, 2009).
Structureless, red-brown mudstones are massive and laterally extensive; they commonly coarse upward
and are capped by caliche. Due to the abundant root traces, carbonate nodules, mottling, we interpret these
facies as pedogenized overbank deposits (LF2; Retallack, 1988). Continuous, tabular, unfossiliferous, and
laminated limestones can be easily distinguished from massive, nodular caliches (LF3) and are interpreted
as lacustrine limestones (LF4; Prothero & Schwab, 1996). Conglomerate and sandstone bodies display the
characteristic wing shape and fining upward sequence with erosive, coarse basal lags found in fluvial chan-
nel bodies (LF5; Nichols, 2009).
Overall, the depositional environments reflect long-term, repetitive changes along an alluvial fan-floodplain-
lake system. The juxtaposition of well-developed soil horizons on top of alluvial fans and fluvial channels
suggests frequent alluvial fan lobe and fluvial channel avulsions. Lacustrine limestone formation suggests
periods of low sedimentary input.
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Figure 6. Histograms and kernel density estimate diagrams for detrital zircon age distributions of samples characterizing potential Saricakaya Basin sedimentary
sources. Samples are grouped by potential source regions and stacked in stratigraphic order: Sedimentary units and Central Sakarya Basement of Sogiit Thrust
hanging wall (light gray, top) characterize sediment derived from the north; Karakaya Complex and modern rivers draining the IAESZ characterize the south (dark
gray, bottom). All ages are displayed in the right column in 20-Myr bins and only ages <500 Ma in 10-Myr bins on the left. CS = Central Sakarya; J = Jurassic;

K = Cretaceous; Pg = Paleogene; * previously published data (Table 3).

5.2. Sedimentary Provenance

The provenance results from detrital zircon, modal sandstone, and field observations establish that the SB
sediments contain detritus sourced from the Izmir-Ankara-Erzincan suture zone and Sogiit Thrust fault
hanging wall.

5.2.1. Detrital Zircon U-Pb Geochronology

Here we interpret the source of zircons found in SB samples, from oldest to youngest, based on the compar-
ison with potential sediment sources (Figure 7). Early Paleozoic and Precambrian zircons present in SB sam-
ples younger than 48.0 Ma are derived from exposed Central Sakarya Basement. Minor Proterozoic peaks
present in the SB are not present in the two source compilations, such as the 1,500-Ma peak (0.5%). This
could indicate that there were other sedimentary sources, or it could be an artifact of sample size. The
Devonian age peak (~400 Ma) is not useful for provenance because it is present in both sources. Similarly,
our data set does not determine whether Carboniferous zircons in the SB are from Central Sakarya
Basement exposed by the Sogiit Thrust, Karakaya Complex, or reworked Sogiit Thrust sedimentary strata.
Triassic zircons are abundant in the SB and IAESZ (especially KK.10) and minorly present in the post-
Jurassic Sogiit Thrust samples (2.7%). We suggest that Triassic zircons in the SB reflect sediment input from
the Karakaya Complex in the suture zone. Jurassic zircons in the SB do not appear to be derived from either
potential source. The Late Cretaceous zircons are present in the post-Jurassic S6giit Thrust sedimentary
samples and in most SB samples younger than 48.0 Ma. These zircons could come directly from the
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Basement samples (light gray), and IAESZ and only Karakaya Complex samples (medium gray). Colored bars highlight both Cretaceous-Paleogene magmatic
cyclicity, and age peaks diagnostic of SB provenance. Histograms are in 10-Myr bins for ages <500 Ma, and 50-Myr bins for ages >500 Ma.

Cretaceous volcanic arc in the CSB or Beypazari plutons or reworked Sogiit Thrust hanging wall. Eocene
volcanism is well documented within the SB; therefore, Eocene zircons likely reflect sediment or ash
derived directly from the arc. The Eocene age peak in the IAESZ samples could be from Nallihan volcanic
rocks or Tavsanli plutons.

We summarize and interpret the provenance data as follows. The oldest SB detrital zircon sample (Basal
Conglomerate Member) contains Triassic zircons, which are characteristic of Karakaya Complex, and almost
no pre-Carboniferous zircons, suggesting a predominant input of material from the IAESZ and locally from
the Nallihan volcanics around 52.4 Ma. The dominance of the Eocene peak in 16SKY23 suggests continued
sediment sourcing from the Nallthan arc through 48.0 Ma. There is a change in provenance around 48.0 Ma.
Samples from the Red through Upper Lacustrine Members contain age peaks uniquely associated with the
Central Sakarya Basement (>450 Ma). This signal demonstrates that Central Sakarya Basement was exposed
along the Sogiit Thrust by 48.0 Ma, and the continued presence of Triassic age zircons demonstrates sus-
tained input from the IAESZ.

5.2.2. Sandstone Petrography and Clast Composition

Modal sandstone compositions affirm the same provenance trends as the detrital zircon data (Figure 8). The
Basal Conglomerate through Red Members samples plot in the oceanic affinity region of the recycled oro-
genic province or volcanic arc province. Lower Purple through Upper Lacustrine Members demonstrate
an upsection increase in quartz and plot in the mixed or continental affinity region of the recycled orogenic
province, especially the Brown Conglomerate and Upper Lacustrine Members. The IAESZ lithologies are
low in quartz and feldspar unlike the exposed Central Sakarya Basement and overlying sedimentary units.
Therefore, we interpret the upsection trend as an increase in sediment supply from the Sogiit Thrust
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Figure 8. Ternary diagrams of sandstone modal framework-grain composi-
tion from the Saricakaya Basin showing petrographic ranges of typical
source provinces following Dickinson (1985) and Dickinson and Suczek
(1979) updated by Garzanti (2018). Points are colored by informal sedimen-
tary members. Black dashed arrows indicate general upsection trends where
present. Province fields and trends are labeled with dark gray text and
arrows. Light gray lines and numbers label the axes. Ternary diagram poles
—AQt = total quartz (Qm = monocrystalline quartz and Qp = polycrystalline
quartz), F = total feldspar, L = lithic fragments (Lm = metamorphic, Ls =
sedimentary, Lv = volcanic, Lt = total lithic fragments including polycrys-
talline quartz).

hanging wall. The dominance of sedi-
mentary lithics suggests that material
was reworked from the IAESZ, S6giit
Thrust, and/or within the SB.

Field observations suggest similar
changes in conglomerate clast com-
positions upsection, from predomi-
nantly greenschist, serpentine, red
radiolarian chert, and andesitic clasts
in the lower half of the section to
mostly quartz, gneiss, and schist in
the upper half. Field observations
suggest that carbonate clasts are
derived from two sources: eroded
and reworked caliche and lacustrine
limestone and from Jurassic lime-
stone. Reworked carbonate clasts
indicate progressive deformation of
sedimentary strata in the SB, sup-
porting syntectonic deposition.

5.3. History and Origin of the
Saricakaya Basin

In this section, we synthesize geo-
chronologic, provenance, and sedi-
mentologic data to describe the
origin and evolution of the
Saricakaya Basin. We conclude that
the SB was a broken foreland basin
formed by flexural loading from the
Sogiit Thrust.

We used volcaniclastic U-Pb ages to
determine that the oldest exposed
Paleogene deposits are ~52.4 Ma.
Therefore, the SB was set up by at
least 52 Ma and deposition continued
through at least 48 Ma. Deposition
was coeval with postcollisional mag-
matism. Because there were no tuffs
to constrain the upper age of our sec-
tion, the duration of deposition is
uncertain. Correlative deposits in
the eastern SB are interbedded with
51.7- to 44.7-Ma lavas and tuffs, and
our section is entirely terrestrial, so
it is possible that our section captures
at least the early Lutetian prior to the
late Lutetian-Bartonian/Priabonian
(?) marine incursion (Ocakoglu et
al., 2012, 2018; Sahin et al., 2019).

All provenance data are consistent
with the SB system being fed by the
hanging wall of the Sogiit Thrust
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and TAESZ. Detrital zircon and sandstone petrography results display a similar trend of increasing relative
proportions of Central Sakarya Basement material, starting at the top of the Red Member around 48.0 Ma.
The presence of Central Sakarya Basement material demonstrates that the S6giit Thrust was active and
accommodating syncollisional convergence by at least 48 Ma.

The presence of a sedimentary basin requires a mechanism of formation and accommodation space creation.
Models for sedimentation in foreland basins correlate periods of fold-and-thrust belt buildup (flexural load-
ing) to depositional environments. It is debated whether coarse-grained deposition in foreland basins reflects
periods of tectonic activity in the fold-and-thrust belt or isostatic adjustment and progradation during fold-
and-thrust belt quiescence. Either (1) tectonically driven uplift and erosion increases subsidence rate, sedi-
ment flux, and grain size (Burbank et al., 1988; Heller & Paola, 1992; Paola et al., 1992) or (2) periods of rapid
tectonic loading from fold-and-thrust belt activity flex the crust and increase both accommodation space and
subsidence rates to drive fine-grained deposition (deeper facies) in the basin (Flemings & Jordan, 1990;
Heller & Paola, 1992; Paola et al., 1992). Neither model is universally applicable (Burbank et al., 1988), but
both confirm that the repetitive change between coarse- and fine-grained deposition is characteristic of
thrust-loading flexural basins.

The provenance data support an active thrust and repetitive changes from coarse-grained alluvial fan and
fluvial channel facies to fined-grained overbank and lake facies (Figure 4) by 48.0 Ma. Therefore, we classify
the SB as a Laramide-style broken foreland basin by 48.0 Ma (Dickinson et al., 1988). We argue that the SB
was likely formed as a broken foreland basin as early as 52.4 Ma because the same repetitive change in
depositional environments are present by 52.4 Ma. The delay in Central Sakarya Basement material in the
zircon results and in quartz-rich compositions until around 48.0 Ma can be explained in two ways. First,
we measured section along the southern limb of the basin; it would have taken some to overfill the basin
such that material from the northern limb reached the southern limb. Second, based on measured sections
(Ocakoglu et al., 2018), field observations and local geologic maps (Duru & Aksay, 2002; Gedik & Aksay,
2002; Timur & Aksay, 2002), there was at least 2 km of Jurassic-Cretaceous sedimentary cover at the south-
ern margin of the CSB. Therefore, there must have been at least 2 km of throw and correlative erosion on the
Sogiit Thrust by about 48.0 Ma to shed basement-derived zircons into the SB.

6. Discussion

6.1. Western izmir-Ankara-Erzincan Suturing and Geodynamics

6.1.1. Sakarya-Tavsanh Collision

We refine the age of Sakarya-Tavsanl collision via two pieces of evidence. First, we constrain the minimum
age for the onset of syncollisional deformation to 52.4 Ma. Yet, collision was likely much earlier because the
Sogiit Thrust must have been active before the onset of deposition in the SB. Second, the timing of collision is
further constrained by our geochronologic dataset of magmatic flare-ups and lulls in western Anatolia near
the TAESZ: 73- to 115-Ma magmatism, 59- to 72-Ma lull, and 44- to 58-Ma magmatism. This magmatic cycli-
city suggests that the Late Cretaceous arc was active until 72 Ma and collision occurred sometime in the
Maastrichtian-Middle Paleocene. This 72- to 59-Ma lull is compatible with both ages previously proposed
in western Anatolia, 71 and 61 Ma (Acikalin et al., 2016; Ocakoglu et al., 2018), and with the age of collision
in central Anatolia (e.g., Kaymakci et al., 2009).

6.1.2. Slab Dynamics in Western Anatolia

Without conclusive mantle tomography, slab breakoff must be identified by its surface expression: uplift,
local extension, and extensional exhumation. No Paleogene extensional features have been described.
There are three periods of uplift and erosion that could be correlated to slab breakoff. (1) The SB and CSB
Paleogene deposits are in angular unconformity with underlying units (Ocakoglu et al., 2018; Sahin et al.,
2019). Therefore, there was uplift and erosion sometime between the Late Cretaceous and 52 Ma, during a
magmatic lull. If slab breakoff is amagmatic (Garzanti et al., 2018; Niu, 2017), then this period could encom-
pass initial Tavsanli-Sakarya collision, slab rollback, and/or steepening and slab breakoff. This is the best
candidate for slab breakoff, and this scenario does not change the interpretation of the Eocene SB. (2) Our
data demonstrate there was uplift and erosion at the southern and northern SB coeval with postcollisional
magmatism. Yet, the Sogiit Thrust was accommodating shortening in the Paleogene (Sahin et al., 2019)
and the Central Sakarya Basement was exposed by the Ypresian. The SB could not have formed during an
extensional regime: the Sogiit Thrust is the boundary between Karakaya Complex and Central Sakarya
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Figure 9. Conceptual model of the Saricakaya, Eskisehir, and Central Sakarya Basins and Izmir-Ankara-Erzincan suture zone. See text for detailed discussion and
Figure 1 for location. (a) Reconstruction of the Izmir-Ankara subduction zone in the latest Cretaceous prior to collision of the Sakarya Zone with the Tavsanl Zone
at 66 Ma. (b) Reconstruction of the Saricakaya Basin in the Early Eocene (~52-47 Ma) based on interpreted depositional environments and provenance.

Basement, so any extension along this structure would not expose Central Sakarya Basement. (3) The
angular unconformity at the base of the Brown Conglomerate Member likely reflects a period of uplift and
erosion. The unconformity is poorly constrained to younger than 48.0 Ma. There is no clear change in
depositional style or provenance before and after the unconformity. There is no evidence to suggest the
unconformity represents a long period of major uplift, exhumation, and erosion.

Based on the contractional regime in the Early Eocene, we prefer the interpretation that the Nallihan and
Tavsanli igneous rocks are consistent with continued underthrusting, southward mantle wedge migration,
and magmatism, as opposed to slab breakoff, lithospheric delamination, or arc root foundering (Figure 9).
Syncollisional convergence is facilitated by continued slab pull from the Tavsanli slab and/or a southward
jump in subduction to the Afyon-Tavsanli Zone interface or the northern margin of the African plate
(Figure 1; e.g., Pourteau et al., 2016). There was ~250 km of convergence between Africa and Europe from
50 to 35 Ma (van Hinsbergen et al., 2010). If the S6giit Thrust only accommodated 15 km of convergence,
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faults in the accretionary prism and/or the Intra-Pontide suture, in addition to southern active subduction
zones, might have accommodated a significant amount of shortening.

The geochemical signature of the Nallihan and Tavsanli igneous rocks is interpreted as from an astheno-
spheric (Ersoy, Palmer, et al., 2017) or metasomatized lithospheric mantle source (Altunkaynak, 2007).
Alternatively, the magmatic rocks could be the result of several factors other than slab breakoff. First, the
Sakarya Zone, a rifted terrane (P. Ustadmer et al., 2012), could have been thin in the Eocene, as the
Tavsanli Zone crust was only 30-km thick at that time (Okay et al., 1998). Second, if the Sogiit Thrust marks
the boundary between Central Sakarya Basement and Karakaya Complex, then the crust beneath the SB was
thin and oceanic, explaining why there was little crustal contamination (Altunkaynak, 2007). Lastly, the
Eocene volcanic front, located within 5 km of the accretionary mélange, could have been derived from the
mantle wedge (Harris et al., 1994; Okay et al., 1998).

6.2. Geodynamic Model

In this section, we synthesize the Saricakaya Basin interpretation into a holistic model for the evolution of
this part of western Anatolia (Figure 9).

1. Prior to Sakarya-Tavsanli collision, the CSB was one large forearc-backarc basin complex bisected by the
Late Cretaceous volcanic arc (Ag¢ikalin et al., 2016; Ocakoglu et al., 2018).

2. Initial collision in the Maastrichtian-Middle Paleocene was marked by a magmatic lull (72-59 Ma;
Figure 7). Collision was marked in the CSB stratigraphic record as uplift, northward deltaic progradation,
shallowing, increased sedimentation rates, and an angular unconformity (Ocakoglu et al., 2018).
Shortening and underthrusting were accommodated by the Sogiit Thrust, the paleosuture between
Karakaya Complex and Central Sakarya Basement. There was syncollisional slab rollback.

3. By 52 Ma, the SB formed by flexural loading from S&giit Thrust and was partitioned from the CSB.
Sediment was initially sourced from the volcanic arc and suture zone and likely the sedimentary cover
in the Sogiit Thrust hanging wall. Around 48.0 Ma, Central Sakarya Basement was exposed along the
thrust and feeding the SB. Postcollisional Nallithan and Tavsanli magmatism occurred over a 14-Myr
span, from 58 to 44 Ma. The slab was steeply dipping, evidenced by the short distance from the suture
zone to volcanic front.

6.3. Central-Western Anatolian Geodynamics

The three collision models for central Anatolia estimate Pontides-Kirsehir Block collision was in the
Maastrichtian-early Paleocene based on stratigraphic, metamorphic, magmatic, and structural analyses
(Gortr et al., 1984, 1998; van Hinsbergen et al., 2016; Kaymakci et al., 2009; Lefebvre et al., 2013; Licht
et al., 2017; Meijers et al., 2010; Robertson et al., 2009). Here we affirm a Maastrichtian-Middle Paleocene colli-
sion in western Anatolia, supporting the synchronous collision model (e.g., Giirer & van Hinsbergen, 2018).

Furthermore, there is coeval deformation and basin formation along the IAESZ. We demonstrate fold-and-
thrust belt development and basin formation by 52 Ma. Large Cretaceous-Eocene peripheral and retro-arc
foreland basins and fold-and-thrust belts developed in central Anatolia (Hippolyte et al., 2016; Janbu et
al., 2007; Leren et al., 2007) and generally recorded a switch from Late Cretaceous extension to syncollisional
contraction in the Paleocene-Early Eocene (Kaymakci et al., 2009; Nairn et al., 2013). There are a few differ-
ences, such as, after collision in central Anatolia, deformation fronts of thin-skinned thrust belts and depo-
centers migrated perpendicularly away from the suture zone (Advokaat et al., 2014; Kaymakci et al., 2009) as
opposed to deposition in the SB near the suture zone. Also, thick-skinned deformation in the west preceded
Middle-Late Eocene thick-skinned deformation in central Anatolia (e.g., Kaymakci et al., 2009; Nairn et al.,
2013). This along-strike change in deformation remains unexplained in collision models but could be a result
of changes in lithology, basement thickness, preexisting structures, or effects of oblique subduction on oro-
gen dynamics (Plunder et al., 2018).

In addition, magmatic flare-ups and lulls were synchronous along the IAESZ. From a large, compiled data
set (n = 702) of <100-Ma magmatism in central and eastern Anatolia, Schleiffarth et al. (2018) find a
high-flux magmatic event from 73 to 100 Ma, magmatic lull from 60 to 72 Ma, and flare-up from 40 to 58
Ma. This is almost exactly the results of our data set (n = 2,245): 73- to 115-Ma magmatism, 59- to 72-Ma lull,
and 44- to 58-Ma magmatism.
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Contemporaneous collision, deformation, and magmatism across the western and central IAESZ all suggest
that the synchronous collision model is the most suitable. Our data and interpretations of the SB are more
aligned with a coeval collision of the KB and Tavsanli Zone with the Pontides, suggesting that the KB is
the lateral equivalent of the Tavsanli Zone and not a promontory or separate terrane.

7. Conclusions

‘We constrain Pontide-Tavsanli Zone collision to Maastrichtian-Middle Paleocene. We demonstrate that the
Saricakaya Basin was a syncollisional, Eocene broken foreland basin that formed by flexural loading from
the Sogiit Thrust by 52 Ma. Sediment was sourced from both the Izmir-Ankara-Erzincan suture zone and
basement-involved Sogiit Thrust. The SB cautions against the overuse of slab breakoff to explain postcolli-
sional magmatism (Garzanti et al., 2018; Niu, 2017). Our reconstruction of the SB elucidates complete oppo-
site crustal response than what is predicted by slab breakoff. The SB formed in contractional regime, with
significant basin subsidence coeval with postcollisional magmatism. We provide a new model of syncolli-
sional evolution in western Anatolia in which convergence, underthrusting, and accommodation space crea-
tion dominate during the early Eocene. Compared to the record of collisional evolution in central Anatolia,
we demonstrate a synchronous magmatic history and onset of deformation along the Izmir-Ankara-
Erzincan suture zone. Contemporaneous collision supports synchronous collision models which imply the
Kirsehir Block was the lateral continuation of the Tavsanli Zone not an independent terrane or promontory.
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