8 research outputs found

    Cosmological neutrino simulations at extreme scale

    Get PDF
    Constraining neutrino mass remains an elusive challenge in modern physics. Precision measurements are expected from several upcoming cosmological probes of large-scale structure. Achieving this goal relies on an equal level of precision from theoretical predictions of neutrino clustering. Numerical simulations of the non-linear evolution of cold dark matter and neutrinos play a pivotal role in this process. We incorporate neutrinos into the cosmological N-body code CUBEP3M and discuss the challenges associated with pushing to the extreme scales demanded by the neutrino problem. We highlight code optimizations made to exploit modern high performance computing architectures and present a novel method of data compression that reduces the phase-space particle footprint from 24 bytes in single precision to roughly 9 bytes. We scale the neutrino problem to the Tianhe-2 supercomputer and provide details of our production run, named TianNu, which uses 86% of the machine (13 824 compute nodes). With a total of 2.97 trillion particles, TianNu is currently the world's largest cosmological N-body simulation and improves upon previous neutrino simulations by two orders of magnitude in scale. We finish with a discussion of the unanticipated computational challenges that were encountered during the TianNu runtime

    Weighing Neutrinos with Cosmic Neutral Hydrogen

    Get PDF
    We investigate the signatures left by massive neutrinos on the spatial distribution of neutral hydrogen (H I) in the post-reionization era by running hydrodynamic simulations that include massive neutrinos as additional collisionless particles. We find that halos in massive/massless neutrino cosmologies host a similar amount of neutral hydrogen, although for a fixed halo mass, on average, the H I mass increases with the sum of the neutrino masses. Our results show that H I is more strongly clustered in cosmologies with massive neutrinos, while its abundance, Omega(H I) (z), is lower. These effects arise mainly from the impact of massive neutrinos on cosmology: they suppress both the amplitude of the matter power spectrum on small scales and the abundance of dark matter halos. Modeling the H I distribution with hydrodynamic simulations at z > 3 and a simple analytic model at z < 3, we use the Fisher matrix formalism to conservatively forecast the constraints that Phase 1 of the Square Kilometre Array will place on the sum of neutrino masses, M-nu = Sigma m(nu). We find that with 10,000 hr of interferometric observations at 3 less than or similar to z less than or similar to 6 from a deep and narrow survey with SKA1-LOW, the sum of the neutrino masses can be measured with an error sigma(M-nu) less than or similar to 0.3 eV (95% CL). Similar constraints can be obtained with a wide and deep SKA1-MID survey at z less than or similar to 3, using the single-dish mode. By combining data from MID, LOW, and Planck, plus priors on cosmological parameters from a Stage IV spectroscopic galaxy survey, the sum of the neutrino masses can be determined with an error sigma(M-nu) similar or equal to 0.06 eV (95% CL)

    Cross-correlation of galaxies and galaxy clusters in the Sloan Digital Sky Survey and the importance of non-Poissonian shot noise

    Get PDF
    We present measurements of angular cross power spectra between galaxies and opticallyselected galaxy clusters in the final photometric sample of the Sloan Digital Sky Survey (SDSS). We measure the autocorrelations and cross correlations between galaxy and cluster samples, from which we extract the effective biases and study the shot noise properties. We model the non-Poissonian shot noise by introducing an effective number density of tracers and fit for this quantity. We find that we can only describe the cross-correlation of galaxies and galaxy clusters, as well as the autocorrelation of galaxy clusters, on the relevant scales using a non-Poissonian shot noise contribution. The values of effective bias we finally measure for a volume-limited sample are bcc= 4.09\ub10.47 for the cluster autocorrelation and bgc = 2.15\ub10.09 for the galaxy-cluster cross-correlation. We find that these results are consistent with expectations from the autocorrelations of galaxies and clusters and are in good agreement with previous studies. The main result is two-fold: first we provide a measurement of the cross-correlation of galaxies and clusters, which can be used for further cosmological analysis; and secondly we describe an effective treatment of the shot noise

    Constraining neutrino properties with a Euclid-like galaxy cluster survey

    No full text
    We perform a forecast analysis on how well a Euclid-like photometric galaxy cluster survey will constrain the total neutrino mass and effective number of neutrino species. We base our analysis on the Monte Carlo Markov Chains technique by combining information from cluster number counts and cluster power spectrum. We find that combining cluster data with Cosmic Microwave Background (CMB) measurements from Planck improves by more than an order of magnitude the constraint on neutrino masses compared to each probe used independently. For the Lambda CDM+m(v) model the 2 sigma upper limit on total neutrino mass shifts from Sigma m(v) < 0.35eV using cluster data alone to Sigma m(v) < 0.031eV when combined with Planck data. When a non- standard scenario with N-eff (sic) 3.046 number of neutrino species is considered, we estimate an upper limit of N-eff < 3.14 (95%CL), while the bounds on neutrino mass are relaxed to Sigma m(v) < 0.040eV. This accuracy would be sufficient for a 2 sigma detection of neutrino mass even in the minimal normal hierarchy scenario (Sigma m(v) similar or equal to 0.05 eV). In addition to the extended Lambda CDM+ m(v) + N-eff model we also consider scenarios with a constant dark energy equation of state and a non-vanishing curvature. When these models are considered the error on Sigma m(v) is only slightly affected, while there is a larger impact of the order of similar to 15% and similar to 20% respectively on the 2 sigma error bar of N-eff with respect to the standard case. To assess the effect of an uncertain knowledge of the relation between cluster mass and optical richness, we also treat the Lambda CDM+ m(v) + N-eff case with free nuisance parameters, which parameterize the uncertainties on the cluster mass determination. Adopting the over-conservative assumption of no prior knowledge on the nuisance parameter the loss of information from cluster number counts leads to a large degradation of neutrino constraints. In particular, the upper bounds for Sigma m(v) are relaxed by a factor larger than two, Sigma m(v) < 0.083 eV (95%CL), hence compromising the possibility of detecting the total neutrino mass with good significance. We thus confirm the potential that a large optical/near-IR cluster survey, like that to be carried out by Euclid, could have in constraining neutrino properties, and we stress the importance of a robust measurement of masses, e.g. from weak lensing within the Euclid survey, in order to full exploit the cosmological information carried by such survey

    Modelling projection effects in optically selected cluster catalogues

    Get PDF
    The cosmological utility of galaxy cluster catalogues is primarily limited by our ability to calibrate the relation between halo mass and observable mass proxies such as cluster richness, X-ray luminosity, or the Sunyaev-Zeldovich signal. Projection effects are a particularly pernicious systematic effect that can impact observable mass proxies; structure along the line of sight can both bias and increase the scatter of the observable mass proxies used in cluster abundance studies. In this work, we develop an empirical method to characterize the impact of projection effects on redMaPPer cluster catalogues. We use numerical simulations to validate our method and illustrate its robustness. We demonstrate that modelling of projection effects is a necessary component for cluster abundance studies capable of reaching 48 5 per cent mass calibration uncertainties (e.g. the Dark Energy Survey Year 1 sample). Specifically, ignoring the impact of projection effects in the observable-mass relation - i.e. marginalizing over a lognormal model only - biases the posterior probability of the cluster normalization condition S8 61 \u3c38(\u3a9m/0.3)1/2 by \u394S8 = 0.05, more than twice the uncertainty in the posterior for such an analysis

    Cosmology with massive neutrinos II: on the universality of the halo mass function and bias

    No full text
    We use a large suite of N-body simulations to study departures from universality in halo abundances and clustering in cosmologies with non-vanishing neutrino masses. To this end, we study how the halo mass function and halo bias factors depend on the scaling variable sigma(2) (M, z), the variance of the initial matter fluctuation field, rather than on halo mass M and redshift z themselves. We show that using the variance of the cold dark matter rather than the total mass field, i.e., sigma(2)(cdm) (M, z) rather than sigma(2)(m) (M, z), yields more universal results. Analysis of halo bias yields similar conclusions: when large-scale halo bias is defined with respect to the cold dark matter power spectrum, the result is both more universal, and less scale- or k-dependent. These results are used extensively in Papers I and III of this series

    Supernova Siblings: Assessing the Consistency of Properties of Type Ia Supernovae that Share the Same Parent Galaxies

    Get PDF
    While many studies have shown a correlation between properties of the light curves of SNe Ia and properties of their host galaxies, it remains unclear what is driving these correlations. We introduce a new direct method to study these correlations by analyzing "parent" galaxies that host multiple SNe Ia "siblings." Here, we search the Dark Energy Survey SN sample, one of the largest samples of discovered SNe, and find eight galaxies that hosted two likely SNe Ia. Comparing the light-curve properties of these SNe and recovered distances from the light curves, we find no better agreement between properties of SNe in the same galaxy as any random pair of galaxies, with the exception of the SN light-curve stretch. We show at 2.8\u3c3 significance that at least one-half of the intrinsic scatter of SNe Ia distance modulus residuals is not from common host properties. We also discuss the robustness with which we could make this evaluation with LSST, which will find 100 7 more pairs of galaxies, and pave a new line of study on the consistency of SNe Ia in the same parent galaxies. Finally, we argue that it is unlikely that some of these SNe are actually single, lensed SN with multiple images
    corecore