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Abstract Constraining neutrino mass remains an elusive challenge in modern physics.
Precision measurements are expected from several upcoming cosmological probes of
large-scale structure. Achieving this goal relies on an equal level of precision from the-
oretical predictions of neutrino clustering. Numerical simulations of the non-linear evo-
lution of cold dark matter and neutrinos play a pivotal role in this process. We incorpo-
rate neutrinos into the cosmological N-body code CUBEP3M and discuss the challenges
associated with pushing to the extreme scales demanded by the neutrino problem. We
highlight code optimizations made to exploit modern high performance computing archi-
tectures and present a novel method of data compression that reduces the phase-space
particle footprint from 24 bytes in single precision to roughly 9 bytes. We scale the neu-
trino problem to the Tianhe-2 supercomputer and provide details of our production run,
named TianNu, which uses 86% of the machine (13,824 compute nodes). With a total of
2.97 trillion particles, TianNu is currently the world’s largest cosmological N-body sim-
ulation and improves upon previous neutrino simulations by two orders of magnitude in
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scale. We finish with a discussion of the unanticipated computational challenges that were
encountered during the TianNu runtime.

Key words: cosmology: theory — large-scale structure of universe — methods: numeri-
cal

1 INTRODUCTION

The standard model of particle physics predicts the existence of three neutrino flavours: electron, muon,
and tau. These flavours exist as superpositions of three mass eigenstates, with the generic prediction of
the standard model claiming each eigenstate have identically zero mass. However, various extensions
of the standard model exist for which the mass eigenstates can be non-zero (Lesgourgues & Pastor
2006). In this case, Pontecorvo (1958) showed it is possible that flavour is not conserved, allowing
neutrinos to oscillate between flavour with time. This phenomena was firmly established by observations
of the flux of electron neutrinos from the Sun that were roughly three times smaller than expected
based on solar models (Ahmad et al. 2002). The resolution is that electron neutrinos, the only flavour
produced in the Sun, oscillate between muon and tau during their passage through the Sun, leading to a
suppressed flux of electron neutrinos when they arrive at Earth (Wolfenstein 1978; Mikheyev & Smirnov
1985). The existence of neutrino oscillations have also been verified from the flux of electron and muon
neutrinos produced from cosmic ray collisions in the Earth’s atmosphere (Fukuda et al. 1998). These
atmospheric and solar neutrino oscillation experiments were awarded the 2015 Nobel Prize in physics
for their confirmation of massive neutrinos.

Constraining the absolute mass hierarchy of neutrinos is a challenging problem in physics.
Oscillation experiments imply that at least two of the three neutrino eigenstates are massive, with min-
imum masses of roughly 10 and 50 meV (Capozzi et al. 2016). Unfortunately, these experiments are
only sensitive to the mass-squared splittings between mass eigenstates and cannot be used to infer the
hierarchy of individual neutrino masses. This leaves many open questions into the nature of these fun-
damental particles. To this end, particle physicists have devised numerous experiments that aim to place
constraints on individual neutrino masses including observations of the β decay of tritium (Kraus et al.
2005; KATRIN collaboration 2001), or from the possibility of neutrinoless double-β decay (Agostini
et al. 2013; The Exo-200 Collaboration et al. 2014) in the event that neutrinos are Majorana particles.

Cosmologists have also been working hard to constrain the neutrino mass hierarchy. Relic neutri-
nos produced shortly after the Big Bang are second only to photons as the most abundant particle in
the universe. As such, they have the potential to impact cosmological phenomena including the cos-
mic microwave background (CMB) and large-scale structure (LSS). Currently, the best constraints on
neutrino mass come from the Planck CMB satellite, with an upper bound on the sum of neutrino mass
of

∑
mν < 194 meV (Planck Collaboration et al. 2015). Future LSS experiments such as Euclid

(Amendola et al. 2013) and LSST (LSST Dark Energy Science Collaboration 2012) are expected to
reduce this upper bound to the ∼ 40 meV level using precision measurements of the matter power
spectrum (Costanzi Alunno Cerbolini et al. 2013). Another potential LSS probe involves measuring the
dipole asymmetry in the matter density field that results from the relative flow between cold dark matter
(CDM) and neutrinos (Zhu et al. 2014b,a; Inman et al. 2015).

In preparation of these upcoming probes, theorists must make predictions for the effect of massive
neutrinos on LSS within the non-linear regime where analytic calculations of the growth of structure
break down. They are thus forced to rely on the use of cosmological structure formation simulations.
Such simulations have a mature history in cosmology, with the earliest N-body schemes being imple-
mented in the 1970’s (e.g., Peebles 1970; Miyoshi & Kihara 1975; White 1976; Aarseth et al. 1979).
The general picture is that of a set of point particles evolving under their mutual gravitational inter-
action with some combination of particle-mesh (PM), particle-particle (PP), and tree algorithms used
for the force calculation. Since their first inception, cosmological N-body simulations have been widely
adopted and optimized for high performance computing (HPC) environments, with the current state-of-
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the-art simulations now reaching the trillion-particle scale for the pure CDM case (Skillman et al. 2014;
Habib et al. 2016).

Cosmological N-body simulations that self-consistently coevolve CDM and neutrino particles have
only recently begun to mature in scale (e.g., Brandbyge et al. 2008; Viel et al. 2010; Bird et al. 2012;
Villaescusa-Navarro et al. 2013; Inman et al. 2015; Castorina et al. 2015). The main technological
challenge in this case is that neutrinos are thermally hot, having velocity dispersions several orders of
magnitude greater than that of CDM. This thermal motion suppresses the ability of neutrinos to gravi-
tationally clump on small scales and tends to distribute them more uniformly throughout the simulation
volume compared to CDM. As a result, a tremendous amount of shot noise exists on small scales and
can only be reduced by increasing the particle count to large numbers. Any attempt to simulate the
non-linear interaction between CDM and neutrinos in a large cosmological volume must overcome this
computational burden. Fortunately, some of this burden is alleviated when scaled to a large number of
parallel tasks since the near homogeneity of neutrinos leads to a computational load that is significantly
more balanced than the pure CDM case. Hence, the cosmological neutrino problem is perfectly suited
for modern HPC.

We focus here on optimizing the cosmological N-body code CUBEP3M (Harnois-Déraps et al. 2013)
for the extreme scale demanded by the neutrino problem. We highlight specific code changes relevant
for both the neutrino case as well as the more general class of cosmological simulations. Our method is
applied to Tianhe-2 which, as of submission, ranks second on the Top 500 list of supercomputers1. Our
production run uses 13,824 compute nodes of Tianhe-2 (86% of the machine) to evolve 69123 CDM par-
ticles and 138243 neutrino particles in a cubic volume of width 1200 h−1Mpc. We name this simulation
TianNu, or the “Neutrino Sky”. With a total of 2.97 trillion particles, TianNu is the largest cosmological
N-body simulation performed to date and is two orders of magnitude larger than previous cosmological
neutrino simulations. As TianNu was hitherto the most computationally ambitious simulation performed
on Tianhe-2, we were given two weeks of dedicated access to scale our problem and debug any potential
issues with the machine. We discuss here the unforeseen challenges that were uncovered as we pushed
to the current limit of scientific computing.

This paper is organized as follows. In Section 2 we provide an overview of the cosmological N-
body problem and document the optimizations made to CUBEP3M to adapt its usage for extreme-scale
HPC. These include the implementation of an MPI pencil decomposition in the long-range PM force
solver, the addition of memory-efficient nested OpenMP parallelism in the short-range PM and PP force
evaluations, and a novel method of data compression relevant for cosmological simulations. Section 3
presents a weak scaling analysis on the Tianhe-2 and provides details of our production run. We finish
with a discussion of the various technical challenges that were encountered while utilizing 86% of the
machine. The conclusions of our work are summarized in Section 4.

2 NUMERICAL METHOD AND OPTIMIZATIONS

2.1 Code Overview

We begin with a brief overview of the methodology employed by the cosmological code CUBEP3M used
in this study. The text presented here is meant to provide background information that will augment
the code optimizations described in the proceeding subsections. We refer the reader to previous works
(Harnois-Déraps et al. 2013; Inman et al. 2015) for a more thorough analysis of the code structure and
technical algorithms relevant to both the pure CDM and neutrino cases.

Cosmological simulations are parameterized by the physical volume they resolve and the number
of particles they contain. The volume is generally represented as a periodic cube of side length L and
the number of particles expressed as an integer cubed, Np = n3p. In the case of CUBEP3M, the domain
is decomposed into cubes of equal volume, with each cube assigned to a single MPI task. With this
setup, the number of MPI tasks assigned to the problem is constrained to be a cubed integer, Nmpi =
n3mpi. We refer to this top level of cubic domain decomposition as nodes since the usual operation of

1 https://www.top500.org/lists/2016/06/

https://www.top500.org/lists/2016/06/
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Fig. 1 Two-dimensional representation of the domain decomposition into tiles within a single
node (i.e., MPI task) of the overall simulation. In this example, we split the node into two
tiles per dimension, with boundaries of the tiles denoted by solid black lines. The extent
of the short-range PM force and PP force (see text) are constrained within the range of an
individual tile so that OpenMP threads can be used to cycle over all tiles on a node. A small
buffer region (indicated by dotted grey lines) is used to ensure accurate force calculation near
tile boundaries. The solid blue line highlights the bottom left tile with its corresponding buffer
highlighted in red. MPI communications are minimized by requiring their use only during the
long-range PM force calculation and at the end of each time step when particles are passed
between neighbouring nodes.

the code assigns one MPI task per compute node. Within each node exists a second level of cubic
subdivision, into equal volume elements called tiles. Calculations within each node’s volume are done
simultaneously over tiles using OpenMP threads, as described in more detail below. The user is free to
choose the number of tiles within each node, with the ideal strategy to make this an integer multiple of
the number of threads available to each MPI task. Figure 1 shows a two-dimensional representation of
the decomposition into tiles within a single MPI domain.

The objective of cosmological simulations is to evolve particles from an initial configuration at an
early cosmic time to the present epoch. At each time step, the key quantity to compute is the three-
dimensional gravitational force field. This is achieved in CUBEP3M using both PM and PP methods.
Hybrid codes combining multiple force schemes like this are common in cosmological applications.
Another common choice is to substitute a Tree algorithm in place of the PM method used here. We opt
for a PM method since it is much faster for nearly homogeneous particle distributions, as is especially
the case with cosmological neutrinos. Additional advantages of the PM method over Tree algorithms
include reduced memory overhead and ease of parallelizability. The PP force increases resolution below
the mesh scale where the PM force loses range.

In the PM scheme, the gravitational force is found by solving the Poisson equation:

∇2φ(x) = 4πGρ(x). (1)

Here φ is the gravitational potential at spatial (comoving) coordinate x, ρ is the matter density field, and
G is the gravitational constant. The density field is computed by interpolating particles onto a uniform
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cubic mesh containing Ng = n3g cells. The result is then Fourier transformed and the potential is solved
via

φ̃(k) = −4πG

k2
ρ̃(k), (2)

where k is a Fourier mode. The gravitational force in Fourier space is related to the potential as

F̃ (k) = −imφ̃(k)k, (3)

where m is the particle mass and i is the imaginary unit. The three components of the force in real space
are obtained from three inverse Fourier transforms of equation (3).

CUBEP3M splits the PM force computation into two terms: a long-range force term and a short-
range force term. The former is computed on a coarse mesh containing n3g = (np/2)3 cells2 while the
latter uses a mesh that is a factor of 4 times finer in each dimension. The long-range force is solved over
the global simulation volume using Fourier transforms evaluated in parallel over all MPI tasks while the
latter is solved on the local mesh of each individual tile. This approach minimizes MPI communication
where coarse resolution elements are sufficient in the long-range force calculation while maintaining
high resolution on the small scales that depend only on rank-local shared memory.

The utility of the PM scheme is its speed, with the Fourier transforms being order O(NglogNg).
The downside is the force is heavily suppressed below the mesh scale. In CUBEP3M, this is remedied by
appending the short-range PM force with a PP force calculation below the grid scale. The PP force is
evaluated using a direct pairwise summation:

Fi = Gmi

∑
j 6=i

mj
xj − xi
|xj − xi|3

, (4)

whereFi is the force on particle i at spatial location xi. The sum is performed over all particles within the
same grid cell as particle i and is of order O(η2p) where ηp is the typical number of particles within one
cell of the short-range interpolation mesh. In order to avoid artificial scattering in the N-body problem,
the PP force is truncated below some chosen scale called the softening length, rsoft. In CUBEP3M,
the softening length is normally chosen to be 0.05 times the average inter-particle spacing; that is,
rsoft = L/(20np).

2.2 MPI Pencil Decomposition

The first stage in our force evaluation is the long-range PM force. As described above, this is solved
using MPI Fourier transforms evaluated on the global interpolation mesh containing n3g = (np/2)3 cells.
Previously, this was achieved using the FFTW library (Frigo & Johnson 2005) with a one-dimensional
MPI slab decomposition. This setup divides the global interpolation mesh into Nmpi planes of size
ng × ng × (ng/n

3
mpi). Hence, the problem becomes constrained by the requirement that the number of

cells per side, ng , be an integer multiple of the total number of MPI tasks, n3mpi. This constraint scales
poorly since the number of MPI tasks is proportional to the three-dimensional problem size and can thus
quickly exceed the number of interpolation cells in one dimension.

To remedy this issue, we have modified CUBEP3M so that the long-range parallel Fourier trans-
forms are handled using the publicly available P3DFFT library (Pekurovsky 2012). P3DFFT employs
a two-dimensional pencil decomposition where the interpolation mesh is divided into Nmpi pencils of
size ng × (ng/nmpi) × (ng/n

2
mpi). The decomposition constraint is significantly alleviated with the

requirement that ng be an integer multiple of only n2mpi rather than n3mpi. An added advantage of the
pencil decomposition is that the number of MPI communications decrease by a factor of nmpi when

2 In the case of our neutrino simulations, np here refers to the number of neutrino particles which we normally choose to be 8
times greater than the number of CDM particles. This is chosen out of the necessity of suppressing the high level of neutrino shot
noise that results from their thermal motion. Both CDM and neutrino particles are interpolated to the same mesh when computing
PM forces.
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subroutine compute_tile_forces
call link_list
!$omp do num_threads(mt)
do tile = 1, num_tiles

thread = omp_get_thread_num() + 1
rho(1:ng, 1:ng, 1:ng, thread) = 0
call density_interpolation(nt,thread)
call Fourier_transforms(nt,thread)
call inverse_force_interpolation(nt,thread)
call pp_force(nt,thread)

enddo
!$omp end do

end subroutine compute_tile_forces

Fig. 2 Pseudocode showing the usage of nested OpenMP threading within each tile to maxi-
mize parallel efficiency on many-core systems with limited memory. Here “mt” represents the
number of master threads while “nt” is the number of nested threads available to each master
thread. The initialization of the “rho” array provides an example of the memory overhead as-
sociated with each master thread. Nested OpenMP loops exist in each of the subroutine calls
with data written only to those arrays initialized by the master thread. All threaded regions
employ dynamic scheduling to minimize load imbalance. The calculation of the linked list
prior to looping over tiles accelerates particle lookup in the interpolation and PP stages.

transforming data between cubic nodes and pencils. In particular, a slab (pencil) decomposition requires
n2mpi (nmpi) MPI communications corresponding to each of the individual nodes a given slab (pencil)
intersects in the xy plane. The pencil decomposition thus requires larger but fewer MPI communications.

2.3 Nested OpenMP Parallelism

Unlike the long-range PM force, the short-range PM and PP forces are local quantities that can ignore
sufficiently distant parts of the simulation volume. The region within which these forces operate can be
completely isolated within individual tiles. In this case, the short-range PM force is evaluated using an
interpolation mesh and Fourier transforms local to each tile while the PP force is evaluated by looping
over each cell in the mesh and identifying its constituent particle pairs. A small buffer region around
each tile is used to ensure that the force is accurately computed for particles near the boundary of the
tile (see Figure 1). With this setup, no communication between tiles is necessary and we perform the
loop over tiles using OpenMP threads with dynamic scheduling used to minimize load imbalance.

Previously, each tile would be assigned only one thread, meaning the number of active tiles at
any moment equals the number of OpenMP threads. In the usual operation of the code, this number is
equal to the number of cores on a single compute node, or an integer multiple of this if hyper-threading
is possible. Since each active thread must store its local interpolation mesh (as well as other arrays
dedicated to the PP force calculation), this approach can become expensive in modern HPC architectures
where the strategy is to maximize the number of cores on a single node. To maximize parallel efficiency
with finite memory, we have incorporated nested OpenMP parallelism into CUBEP3M so that each tile
may be handled by multiple threads. The memory overhead of the tile is assigned to the master thread
while nested threads perform the particle interpolations, Fourier transforms, and PP forces in parallel.
This change allows us to maximize core usage, especially at late times in the simulation when the PP
force easily dominates the compute time as clustered objects form.

Figure 2 provides an overview of the nested OpenMP parallelism within each tile. The first stage
is the calculation of a linked list defined on a mesh with the same resolution as the long-range PM
interpolation mesh. The linked list is essential in accelerating particle access in the interpolation stages
as well as the PP force evaluation. Next, we use “mt” master threads to perform the dynamic scheduling
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over all num tile tiles. Each master thread initializes an array, rho, which is used to store the three-
dimensional density interpolation on the local mesh of the tile containing ng cells. Another set of arrays
pertaining to the PP force evaluation are also initialized by each master thread. The balance between
the number of master and nested threads is dictated by the memory overhead associated with each
master thread. The short-range PM force calculation is composed of the density interpolation, three
Fourier transform calls (one per dimension), and the inverse force interpolation. Each of these routines
is parallelized using “nt” nested threads with data written only to the local arrays initialized by the
master thread. More specifically, the density interpolation involves a threaded loop over all cells in the
linked list with a stride in the outer loop used to prevent race conditions that may occur when writing
to rho with a cloud-in-cell (CIC) interpolation. The stride is important since it avoids potentially slow
thread locks. The inverse force interpolation involves a similar threaded loop over all cells in the linked
list. The Fourier transforms are evaluated using the threaded versions of the one-dimensional FFTW3
routines. The final stage in each tile is the PP force which again involves a loop over each cell in the
linked list. Each stage shown in Figure 2 uses dynamic scheduling of OpenMP threads to minimize load
imbalance.

2.4 Data Compression

Our final consideration involves data compression. It is generally important for any application to store
snapshots at various stages during runtime for both checkpointing and data analysis. In cosmologi-
cal simulations, the relevant information usually involves the position and velocity of each particle.
This amounts to 24 bytes per particle for a three-dimensional problem represented in single precision.
Simulations now reaching the trillion-particle scale thus require tens of TB for a single particle snap-
shot. This is a formidable challenge from the standpoint of both runtime I/O as well as data storage and
handling.

We have devised a new method of data compression relevant for cosmological simulations. The
first stage is to construct a linked list based on particle positions in the global simulation volume. We
use a cubic mesh containing n3g = (np/2)3 cells for this purpose. In our case, this step is already done
prior to the force evaluations (see Figure 2) and thus requires no additional work. Particle information
is written for each cell in the linked list in an ordered fashion, as follows. First, we write the number
of particles in the given cell as an unsigned 1-byte integer3. Next, for each particle in the cell, we
write its three components of position and velocity. Positions are compressed by converting them to
unsigned 1-byte integers that represent their digitized offset from the local origin of that cell. Since
particles are written in a cell-ordered format this guarantees that positions are stored with a precision
of L/(256ng) = L/(128np). This truncation is roughly six times finer than the force resolution of
the simulation specified by rsoft so that it should have minimal impact on subsequent dynamics when
used as a restart. Velocities are more difficult to compress due to their unstructured distribution within
the simulation volume. We choose to compress velocities into 2-byte integers representing their index
within a histogram containing 216 equally spaced bins ranging from −vmax to vmax. Here vmax is the
maximum (absolute) particle velocity across all ranks and is stored in the header of the output file.

This process reduces the particle footprint from 24 bytes to roughly 9 bytes. In our method, each
MPI task writes its local volume to separate files in the cell-ordered format described above. In addition,
different particles species (i.e., CDM, neutrinos) are written to separate files so the species type of
each particle does not need to be stored. In this case, it is important to compute vmax for each species
separately since they may have vastly different characteristic velocities. For our purposes here, it is
sufficient to store only position and velocity information. More sophisticated compression algorithms
would need to be devised for storing additional quantities (e.g., particle identification tags).

We have tested the error associated with a single compression as well as the accumulation in error
that results from restarting multiple times from compressed data. For this purpose, we performed two

3 If the number of particles in the cell is equal to or larger than 255, we first write 255 and then write the actual number as a
4-byte integer.
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Fig. 3 Relative difference between density (top panels) and velocity (bottom panels) power
spectra between an uncompressed simulation (Pδ,v) and a simulation that restarted from a
series of 10 compressed snapshots (P comp

δ,v ). Both simulations have identical initial conditions
and contain 5763 CDM plus 11523 neutrino particles in a box of side length 100 h−1Mpc.
The left plot corresponds to CDM while the right plot corresponds to neutrinos. Solid black
lines denote the relative difference in power at the final output which includes the cumulative
error from all 10 compressed restarts. For comparison, the dotted blue line shows the relative
difference in power that results from compressing the final output of the uncompressed simu-
lation. The shaded grey regions in the right panels highlight the scales for which fluctuations
in the neutrino measurements are dominated by shot noise rather than compression error.

simulations with identical initial conditions pertaining to a cosmological setup with 5763 CDM and
11523 neutrino particles in a box of side length 100 h−1Mpc. The first simulation ran to completion
without any data compression. The second simulation repeatedly wrote and restarted from compressed
data in order to gauge the total accumulation in error at the final output. In this case, we tested 10
compressed restarts occurring at redshifts z = {5, 4.5, 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5}.

Figure 3 compares density and velocity power spectra between the two simulations for the final
output at redshift z = 0. The left panels correspond to CDM and show sub-percent agreement in the
density power spectra for the entire range in k which extends to half the Nyqvist frequency, kNyq/2 =
18 h/Mpc, of the 11523 mesh used to sample power. The CDM velocity power is also sub-percent up
to about kNyq/3 with 2% fluctuations on the smallest scales. For comparison, the dotted blue line shows
the relative difference in power that results from compressing the final snapshot of the uncompressed
simulation. Interestingly, the solid black and dotted blue lines are in good agreement suggesting that
the majority of the error is associated with a single compression, rather than accumulation in error from
repeated restarts.

Neutrino power spectra are shown in the right panels of Figure 3. The agreement on the largest
scales is similar to the CDM case, but large deviations clearly dominate on small scales. However,
these deviations are not related to the compression itself, but are rather attributed to neutrino shot noise.
The dashed grey regions highlight the scales for which k > knoise where knoise is the scale at which
the Poisson power, Pnoise = 1/n̄, overtakes the cosmological density power, Pδ . Here n̄ is the mean
number density of neutrinos. Density and velocity power spectra are intrinsically noisy on scales smaller
than knoise meaning that deviations seen in the compressed data are not particularly meaningful. Note
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that CDM does not run into this issue since the CDM density power is larger than Pnoise on all scales
resolved by the simulation. As discussed before, the high level of neutrino shot noise is precisely what
makes these simulations expensive.

In summary, we find sub-percent agreement in density power spectra for scales k . knoise. Velocity
power exhibits a similar level of agreement, but only up to scales k . kNyq/3, with percent-level de-
viations emerging on smaller scales. The algorithm presented here is well suited for both CDM and
neutrinos though other factors such as shot noise must be combated in the latter case. The agreement
between the single-compression case and the test case containing 10 compressed restarts indicates that
compression has little effect on subsequent measurements of statistical quantities such as density and
velocity power spectra. While individual particle trajectories are likely to be more discrepant, cosmolog-
ical observations are statistical in nature and thus afford relatively relaxed constraints on compression.
This motivates the question of how much precision is required for storing positions and velocity within
simulation memory. We note that a memory-light version of CUBEP3M has been developed (Yu & Pen
in prep.) that can use adjustable precision (8- or 16-bit) for position and velocity, and will address the
usage of reduced precision in cosmological applications.

3 RESULTS

3.1 Weak Scaling

We begin this section with an investigation of the scaling performance of our cosmological neutrino
simulations on Tianhe-2. We pivot our scaling analysis against a single-node simulation that coevolves
2883 CDM particles and 5763 neutrino particles in a periodic box of side length 50 h−1Mpc. We assign
a single MPI task to this node with 24 OpenMP threads used to utilize each of the 24 CPU cores available
on the node. Four of these threads are assigned as master threads that cycle over tiles (see Figure 2),
with each master thread spawning six nested threads to handle the inner force computations local to the
tile. The MPI domain is divided into 63 tiles with each assigned a mesh containing (192 + 2nbuf)

3 cells
for computing the short-range PM force and PP force. Here nbuf = 24 is the size of the buffer region
used to ensure correct forces near the boundary of the tile. The long-range PM force is computed on the
global 2883 mesh.

CUBEP3M is designed for weak scaling: if we hold the workload per process fixed, the wall-clock
required per time step should be roughly the same when we increase the number of processors in pro-
portion to the problem size. Figure 4 shows the scaling efficiency as we weakly scale the single-node
job described above. The weak scaling efficiency is defined to be t̄0/t̄step where t̄step is the average
wall-clock of each time step and t̄0 is the value of t̄step for the single-node case. Figure 4 shows results
for scaled versions of the single-node case on n3mpi = 23, 43, 83, and 243 nodes of Tianhe-2 (recall that
CUBEP3M constrains the number of MPI tasks to be a perfect cube). Processor workload is held fixed by
increasing the total particle count and simulation volume in proportion to n3mpi. In this way, the spatial
resolution is constant and each simulation probes the same degree of non-linear physics.

The code portrays a high degree of weak scaling efficiency all the way up to 243 nodes where
t̄0/t̄step = 72%. Each scaling trial contains the first 400 time steps from the start of neutrino initial-
ization at z = 5 (see below). Hence, each run contains a fair amount of load imbalance in the CDM
component as these particles have already evolved into the relatively clustered regime. Neutrinos, on the
other hand, are dispersed roughly equally throughout the volume and remain this way for the duration
of the simulation due to their thermal motion. This latter fact tends to promote a relatively balanced
workload across ranks. The high degree of scaling efficiency seen here is an encouraging result for the
prospect of cosmological neutrino simulations.

3.2 TianNu Simulation

The rightmost point in Figure 4 corresponds to our production simulation, TianNu, containing 69123

CDM particles and 138243 neutrino particles in a periodic box of side length 1200 h−1Mpc. TianNu
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Fig. 4 Weak scaling efficiency of our cosmological neutrino simulations on Tianhe-2. In
these trials, each node initially contains 2883 CDM particles and 5763 neutrino particles in a
periodic box of side length 50 h−1Mpc. CDM is first evolved in isolation from z = 100 to
z = 5 with neutrinos added next. In each trial, we record the mean time step, t̄step, of the first
400 steps after neutrinos are added and pivot the results against the single-node case. We find
a weak scaling efficiency of 72% on 13,824 nodes (86% of the machine), corresponding to
our production run, TianNu.

was run on 13,824 compute nodes with an equal number of MPI ranks and 24 OpenMP threads per rank.
This work is primarily focused on the computational aspects of preparing our code and running at scale
on Tianhe-2. However, since large-scale neutrino simulations have emerged only relatively recently in
the field, we will provide here some further background information in regards to our neutrino imple-
mentation. We point the interested reader to Inman et al. (2015) for more details about our initialization
strategies and for a validation of our methods.

The most important difference in our strategy compared to pure CDM setups is the fact that neu-
trinos are initialized at a later time than CDM. This is done entirely from a practical standpoint and is
sourced by safeguards in the code that limit the maximum distance a particle can travel in a single time
step. At the time of CDM initialization, neutrinos in the mass range of interest are highly relativistic,
meaning they move much faster than CDM and their inclusion would slow down the simulation by an
enormous amount. Our solution is to remove neutrinos in the early stages of the simulation while in-
cluding their contribution to the background expansion as a relativistic species. In the case of TianNu,
CDM particles were initialized at z = 100 and evolved in isolation to z = 5 for a total of 549 time steps.
Neutrinos were then added into the mixture4 and the two components evolved together until z = 0 for a
total of 1918 time steps5. The choice of the neutrino initialization redshift is justified by the fact that, on
the scales of interest, neutrinos are still within the linear regime of structure formation at z = 5, so their
initial displacements and velocities are properly computed at that time. The majority of the simulation
was spent in the co-evolution stages (z ≤ 5), accounting for 87% of the total wall-clock time. TianNu

4 TianNu simulates neutrinos of mass mν = 0.05 eV, which at z = 5 have a mean speed of 〈v〉 = 0.06c (c is the speed of
light), and thus are still modestly relativistic but now computationally tractable to include in the simulation.

5 See http://cita.utoronto.ca/˜haoran/thnu/movie.html for an animation depicting the evolution in the
two components followed by a flythrough of the simulation volume.

http://cita.utoronto.ca/~haoran/thnu/movie.html
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consumed an effective runtime of 52 hours though the actual amount of human time that elapsed from
start to finish was much longer, due to various obstacles addressed in the next subsection.

One important point worth noting is that unphysical particle coupling can occur in multi-species
simulations when unlike particle pairs are placed initially close together (e.g., Yoshida et al. 2003;
Angulo et al. 2013). This could have a potential impact on our simulation since some neutrinos may by
chance be placed initially close to CDM particles at z = 5; however, we expect this to be rare, given
that CDM has evolved away from its initial lattice configuration at z = 5. In addition, the large initial
velocities of neutrinos should provide thermal support that protects them against artificial coupling. In
any case, our targeted science is focused on moderately large scales which should remain robust to any
such issues. To date, the analysis of TianNu resulted in two companion papers (Yu et al. 2016; Inman
et al. 2016) that present results on non-linear cosmological neutrino physics.

3.3 Computational Challenges

One of the difficulties associated with performing extreme-scale simulations are the unanticipated tech-
nical setbacks that inevitably occur when a large fraction of the machine is used coherently at once.
Some problems are relatively easy to overcome with software changes while others involve external
factors that require more careful consideration. We present here the main technical challenges that we
encountered as we scaled our simulation to use 86% of Tianhe-2. These problems are not specific to the
cosmological problem at hand and are thus relevant to the general field of scientific computing.

Our first setback involved an apparent bug in the MPI library. We discovered this bug during an
MPI Alltoall call used to transpose data in the long-range PM force calculation. The bug was discov-
ered early in our scaling tests and seemed to be related to a single precision integer overflow within the
MPI library. In our particular case, we were attempting to send and receive n elements of type MPI Real
where n > 229 − 1. This resulted in a segmentation fault on Tianhe-2 as well as various other machines
we tested using different MPI implementations (i.e., Intel MPI, Open MPI, and MVAPICH). We de-
duced that this error was caused by an internal calculation of the number of bytes being sent/received
represented as a single precision integer. This was checked by changing the data type to MPI Double
which failed for n > 228 − 1. We were unable to remedy the problem by compiling in double precision
and found this bug to be a generic feature of all MPI routines, not just MPI Alltoall. Presently, the bug
seems to be fixed, at least with Intel MPI v4, which we have explicitly checked at the time of writing.

At the time, our workaround was to manually replace the MPI Alltoall call with pairwise
send/receive communications using MPI Send and MPI Recv. The message buffers were broken into
pieces such that no individual piece exceeded 231 − 1 bytes. Initially, we attempted to use multiple
non-blocking communications with MPI Isend and MPI Irecv, but found this created too much network
strain, leading to frequent system crashes when running TianNu. Blocking pairwise communication re-
sulted in much more stable data transmission, especially when using a large number of MPI ranks. For
this reason, we suspect our workaround is still better suited for extreme-scale applications, despite the
fact that the initial bug prompting us to abandon MPI Alltoall has since been fixed. This, of course,
depends on how internal communications are handled in MPI Alltoall, though we now prefer the option
of being able to explicitly make this choice in our code. In any event, we urge computational scientists
to think carefully about communications when scaling their code, as this was one of our main sources
of grief.

The next setback we encountered involved runtime I/O. While we were only mainly interested in
storing particle data at the final output for analysis purposes, it was important to checkpoint frequently
during runtime to ensure that progress was maintained in the event of system crashes. Using our com-
pressed data format, each TianNu checkpoint was roughly 25 TB in total size, with this divided into
several files for each MPI task. We experienced a variety of issues while attempting to checkpoint in
TianNu. The most common was a system crash when one or more nodes failed during write, resulting
in an incomplete checkpoint. In more insidious cases, the checkpoint was seemingly successful and the
code evolved forward, but further inspection showed some files to be incompletely written. These were
particularly difficult problems to debug since they required a large problem size to occur frequently.
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Our attempt to circumvent these issues involved writing checkpoints to shared memory. This was
achieved by writing to the local dev/shm temporary filesystem on each node. After all nodes completed
this write, we used 100 background processes to sequentially log into each of the 13,824 compute nodes
and offload their checkpoint to the main filesystem while the simulation proceeded forward. This process
is somewhat analogous to the operation of a burst buffer. Indeed, we found that using effectively only
100 processes to checkpoint put considerably less pressure on the filesystem, resulting in much more
reliable I/O. This also significantly reduced the amount of time spent checkpointing since writing to
shared memory is a relatively quick operation. Obviously, this is not a robust solution in all cases since
it requires having sufficient memory to store a full checkpoint, and that the time between subsequent
checkpoints is longer than the time required to offload to the filesystem. In the end, we still encountered
problems with this implementation, notably having trouble logging into some of the compute nodes at
times. We are still working to perfect our I/O implementation for future runs.

The final computational challenge we faced involved environmental factors. During our time on
Tianhe-2, we had teams in both China and Canada, which allowed for nearly continuous monitoring of
TianNu. Interestingly, the team in Canada had systematically more success in evolving the simulation
forward. The reason was an increased level of system instability during Chinese daytime hours which
lead to frequent system crashes that hindered progress. Tianhe-2 technical stuff speculated that this was
due to increased ambient temperatures and more strain on the electric grid during Chinese daytime
hours. Accordingly, system crashes were somewhat alleviated during our second week on Tianhe-2
when rainfall and cooler weather in Guangzhou seemed to be correlated with improved system stability.
Regardless of the cause, external factors such as system instabilities are difficult to prepare for and have
no clear solution. In our case, the only workaround was patience and persistence.

4 CONCLUSION

Pushing the cosmological neutrino problem to extreme scales is a nontrivial process. A number of mod-
ifications to the cosmological code CUBEP3M were required to maximize performance on Tianhe-2.
These included adopting a two-dimensional pencil decomposition for parallel MPI Fourier transforms
and implementing nested OpenMP parallelism to maximize multicore usage while maintaining mem-
ory flexibility. With these modifications, we achieved 72% weak scaling efficiency on 13,824 nodes
(331,776 CPU cores) of Tianhe-2. Our production simulation, named TianNu, consumed an effective
runtime of 52 hours on 86% of the machine and pushed the cosmological neutrino problem forward by
two orders of magnitude in scale.

Data compression has become an increasingly important factor from the standpoint of runtime per-
formance as well as data storage and portability. We have devised a novel method of data compression
relevant for cosmological particle simulations. Our scheme provides a compression factor of 4x and 2x
in memory over single-precision positions and velocities, respectively, while maintaining sub-percent
accuracy in density and velocity power spectra for the vast majority of scales resolved in the simulation.
This is true when compressing a single snapshot and also when evolving particles forward in time from
multiple previously compressed restarts.

Unanticipated challenges tend to emerge when scaling code to new limits. In our case, we en-
countered both software and hardware problems. Two of these fall into the group of usual suspects:
communication and I/O. An initial bug in the MPI library discovered early in our scaling tests prompted
us to break apart MPI Alltoall communications into buffers no larger than 231−1 bytes. This turned out
to be beneficial during the TianNu runtime since we could explicitly enforce blocking, pairwise com-
munication; other communication strategies were found to be unstable. Runtime I/O also proved finicky
on extreme scales and required a makeshift burst-buffer approach where checkpoints were written to
RAM and offloaded to disk in the background. We are still working on a more robust solution for future
applications. Finally, we experienced a high degree of time variability in machine performance due to
local external factors. This is a considerably intractable problem and cases like this should be kept in
mind when preparing for extreme-scale simulations.
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The main challenge facing cosmological neutrino simulations can be summed up by two competing
effects. On the one hand, large cosmological volumes are needed to acquire sufficient statistics to detect
subtle neutrino effects on LSS. On the other hand, the thermal motion of neutrinos demands high particle
number density to suppress their shot noise on small scales. These factors can only be reconciled by
running at extreme scale. This work attempted to highlight the challenges associated with exploiting
modern scientific computing to elucidate our understanding of neutrinos.
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