870 research outputs found

    Stroke Correlates in Chagasic and Non-Chagasic Cardiomyopathies

    Get PDF
    BACKGROUND: Aging and migration have brought changes to the epidemiology and stroke has been shown to be independently associated with Chagas disease. We studied stroke correlates in cardiomyopathy patients with focus on the chagasic etiology. METHODOLOGY/PRINCIPAL FINDINGS: We performed a cross-sectional review of medical records of 790 patients with a cardiomyopathy. Patients with chagasic (329) and non-chagasic (461) cardiomyopathies were compared. There were 108 stroke cases, significantly more frequent in the Chagas group (17.3% versus 11.1%; p<0.01). Chagasic etiology (odds ratio [OR], 1.79), pacemaker (OR, 2.49), atrial fibrillation (OR, 3.03) and coronary artery disease (OR, 1.92) were stroke predictors in a multivariable analysis of the entire cohort. In a second step, the population was split into those with or without a Chagas-related cardiomyopathy. Univariable post-stratification stroke predictors in the Chagas cohort were pacemaker (OR, 2.73), and coronary artery disease (CAD) (OR, 2.58); while atrial fibrillation (OR, 2.98), age over 55 (OR, 2.92), hypertension (OR, 2.62) and coronary artery disease (OR, 1.94) did so in the non-Chagas cohort. Chagasic stroke patients presented a very high frequency of individuals without any vascular risk factors (40.4%; OR, 4.8). In a post-stratification logistic regression model, stroke remained associated with pacemaker (OR, 2.72) and coronary artery disease (OR, 2.60) in 322 chagasic patients, and with age over 55 (OR, 2.38), atrial fibrillation (OR 3.25) and hypertension (OR 2.12; p = 0.052) in 444 non-chagasic patients. CONCLUSIONS/SIGNIFICANCE: Chagas cardiomyopathy presented both a higher frequency of stroke and an independent association with it. There was a high frequency of strokes without any vascular risk factors in the Chagas as opposed to the non-Chagas cohort. Pacemaker rhythm and CAD were independently associated with stroke in the Chagas group while age over 55 years, hypertension and atrial fibrillation did so in the non-Chagas cardiomyopathies

    Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Get PDF
    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children

    The Relationships of Personality and Cognitive Styles with Self-Reported Symptoms of Depression and Anxiety

    Get PDF
    Many studies have reported concurrent relationships between depressive symptoms and various personality, cognitive, and personality-cognitive vulnerabilities, but the degree of overlap among these vulnerabilities is unclear. Moreover, whereas most investigations of these vulnerabilities have focused on depression, their possible relationships with anxiety have not been adequately examined. The present study included 550 high school juniors and examined the cross-sectional relationships among neuroticism, negative inferential style, dysfunctional attitudes, sociotropy, and autonomy, with a wide range of anxiety and depressive symptoms, as well as the incremental validity of these different putative vulnerabilities when examined simultaneously. Correlational analyses revealed that all five vulnerabilities were significantly related to symptoms of both anxiety and depression. Whereas neuroticism accounted for significant unique variance in all symptom outcomes, individual cognitive and personality-cognitive vulnerabilities accounted for small and only sometimes statistically significant variance across outcomes. Importantly, however, for most outcomes the majority of symptom variance was accounted for by shared aspects of the vulnerabilities rather than unique aspects. Implications of these results for understanding cognitive and personality-cognitive vulnerabilities to depression and anxiety are discussed

    Cup Blocks the Precocious Activation of the Orb Autoregulatory Loop

    Get PDF
    Translational regulation of localized mRNAs is essential for patterning and axes determination in many organisms. In the Drosophila ovary, the germline-specific Orb protein mediates the translational activation of a variety of mRNAs localized in the oocyte. One of the Orb target mRNAs is orb itself, and this autoregulatory activity ensures that Orb proteins specifically accumulate in the developing oocyte. Orb is an RNA-binding protein and is a member of the cytoplasmic polyadenylation element binding (CPEB) protein family. We report here that Cup forms a complex in vivo with Orb. We also show that cup negatively regulates orb and is required to block the precocious activation of the orb positive autoregulatory loop. In cup mutant ovaries, high levels of Orb accumulate in the nurse cells, leading to what appears to be a failure in oocyte specification as a number of oocyte markers inappropriately accumulate in nurse cells. In addition, while orb mRNA is mislocalized and destabilized, a longer poly(A) tail is maintained than in wild type ovaries. Analysis of Orb phosphoisoforms reveals that loss of cup leads to the accumulation of hyperphosphorylated Orb, suggesting that an important function of cup in orb-dependent mRNA localization pathways is to impede Orb activation

    Molecular Identification of Atlantic Bluefin Tuna (Thunnus thynnus, Scombridae) Larvae and Development of a DNA Character-Based Identification Key for Mediterranean Scombrids

    Get PDF
    The Atlantic bluefin tuna, Thunnus thynnus, is a commercially important species that has been severely over-exploited in the recent past. Although the eastern Atlantic and Mediterranean stock is now showing signs of recovery, its current status remains very uncertain and as a consequence their recovery is dependent upon severe management informed by rigorous scientific research. Monitoring of early life history stages can inform decision makers about the health of the species based upon recruitment and survival rates. Misidentification of fish larvae and eggs can lead to inaccurate estimates of stock biomass and productivity which can trigger demands for increased quotas and unsound management conclusions. Herein we used a molecular approach employing mitochondrial and nuclear genes (CO1 and ITS1, respectively) to identify larvae (n = 188) collected from three spawning areas in the Mediterranean Sea by different institutions working with a regional fisheries management organization. Several techniques were used to analyze the genetic sequences (sequence alignments using search algorithms, neighbour joining trees, and a genetic character-based identification key) and an extensive comparison of the results is presented. During this process various inaccuracies in related publications and online databases were uncovered. Our results reveal important differences in the accuracy of the taxonomic identifications carried out by different ichthyoplanktologists following morphology- based methods. While less than half of larvae provided were bluefin tuna, other dominant taxa were bullet tuna (Auxis rochei), albacore (Thunnus alalunga) and little tunny (Euthynnus alletteratus). We advocate an expansion of expertise for a new generation of morphology-based taxonomists, increased dialogue between morphology-based and molecular taxonomists and increased scrutiny of public sequence databases.Versión del editor4,411

    Stationary Black Holes: Uniqueness and Beyond

    Get PDF
    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998. Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's authorship. Significantly restructured and updated all sections; changes are too numerous to be usefully described here. The number of references increased from 186 to 32

    The type II RAF inhibitor tovorafenib in relapsed/refractory pediatric low-grade glioma: the phase 2 FIREFLY-1 trial

    Get PDF
    \ua9 2023, The Author(s).BRAF genomic alterations are the most common oncogenic drivers in pediatric low-grade glioma (pLGG). Arm 1 (n = 77) of the ongoing phase 2 FIREFLY-1 (PNOC026) trial investigated the efficacy of the oral, selective, central nervous system–penetrant, type II RAF inhibitor tovorafenib (420 mg m−2 once weekly; 600 mg maximum) in patients with BRAF-altered, relapsed/refractory pLGG. Arm 2 (n = 60) is an extension cohort, which provided treatment access for patients with RAF-altered pLGG after arm 1 closure. Based on independent review, according to Response Assessment in Neuro-Oncology High-Grade Glioma (RANO-HGG) criteria, the overall response rate (ORR) of 67% met the arm 1 prespecified primary endpoint; median duration of response (DOR) was 16.6 months; and median time to response (TTR) was 3.0 months (secondary endpoints). Other select arm 1 secondary endpoints included ORR, DOR and TTR as assessed by Response Assessment in Pediatric Neuro-Oncology Low-Grade Glioma (RAPNO) criteria and safety (assessed in all treated patients and the primary endpoint for arm 2, n = 137). The ORR according to RAPNO criteria (including minor responses) was 51%; median DOR was 13.8 months; and median TTR was 5.3 months. The most common treatment-related adverse events (TRAEs) were hair color changes (76%), elevated creatine phosphokinase (56%) and anemia (49%). Grade ≥3 TRAEs occurred in 42% of patients. Nine (7%) patients had TRAEs leading to discontinuation of tovorafenib. These data indicate that tovorafenib could be an effective therapy for BRAF-altered, relapsed/refractory pLGG. ClinicalTrials.gov registration: NCT04775485

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
    corecore