112 research outputs found

    Mouse stefins A1 and A2 (Stfa1 and Stfa2) differentiate between papain-like endo- and exopeptidases

    Get PDF
    AbstractStefin A (Stfa) acts as a competitive inhibitor of intracellular papain-like cysteine proteases which play important roles in normal cellular functions such as general protein turnover, antigen processing and ovarian follicular growth and maturation. In the mouse there are at least three different variants of Stfa (Stfa1, Stfa2 and Stfa3). Recent genetic studies identified structural polymorphisms in Stfa1 and Stfa2 as candidates for Aod1b, a locus controlling susceptibility to day three thymectomy (D3Tx)-induced autoimmune ovarian disease (AOD). To evaluate the functional significance of these polymorphisms, recombinant allelic proteins were expressed in Escherichia coli, purified and characterized. The polymorphisms do not markedly alter the folding characteristics of the two proteins. Stfa1 and Stfa2 both act as fast and tight binding inhibitors of endopeptidases papain and cathepsins L and S, however their interaction with exopeptidases cathepsins B, C and H was several orders of magnitude weaker compared to human, porcine and bovine Stfa. Notwithstanding, the Ki values for the interactions of Stfa1-b from AOD resistant C57BL/6J mice was 10-fold higher than that of the Stfa1-a allele from susceptible A/J mice for papain, cathepsins B, C and H but not L and S. In contrast, the inhibitory activities of Stfa2-a and Stfa2-b were found to be roughly equivalent for all targets peptidases

    Sex-Specific Gene-by-Vitamin D Interactions Regulate Susceptibility to Central Nervous System Autoimmunity

    Get PDF
    Vitamin D3 (VitD) insufficiency is postulated to represent a major modifiable risk factor for multiple sclerosis (MS). While low VitD levels strongly correlate with higher MS risk in white populations, this is not the case for other ethnic groups, suggesting the existence of a genetic component. Moreover, VitD supplementation studies in MS so far have not shown a consistent benefit. We sought to determine whether direct manipulation of VitD levels modulates central nervous system autoimmune disease in a sex-by-genotype-dependent manner. To this end, we used a dietary model of VitD modulation, together with the autoimmune animal model of MS, experimental autoimmune encephalomyelitis (EAE). To assess the impact of genotype-by-VitD interactions on EAE susceptibility, we utilized a chromosome substitution (consomic) mouse model that incorporates the genetic diversity of wild-derived PWD/PhJ mice. High VitD was protective in EAE in female, but not male C57BL/6J (B6) mice, and had no effect in EAE-resistant PWD/PhJ (PWD) mice. EAE protection was accompanied by sex- and genotype-specific suppression of proinflammatory transcriptional programs in CD4 T effector cells, but not CD4 regulatory T cells. Decreased expression of proinflammatory genes was observed with high VitD in female CD4 T effector cells, specifically implicating a key role of MHC class II genes, interferon gamma, and Th1 cell-mediated neuroinflammation. In consomic strains, effects of VitD on EAE were also sex- and genotype dependent, whereby high VitD: (1) was protective, (2) had no effect, and (3) unexpectedly had disease-exacerbating effects. Systemic levels of 25(OH)D differed across consomic strains, with higher levels associated with EAE protection only in females. Analysis of expression of key known VitD metabolism genes between B6 and PWD mice revealed that their expression is genetically determined and sex specific and implicated Cyp27b1 and Vdr as candidate genes responsible for differential EAE responses to VitD modulation. Taken together, our results support the observation that the association between VitD status and MS susceptibility is genotype dependent and suggest that the outcome of VitD status in MS is determined by gene-by-sex interactions

    Sex chromosome complement contributes to sex differences in coxsackievirus B3 but not influenza A virus pathogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both coxsackievirus B3 (CVB3) and influenza A virus (IAV; H1N1) produce sexually dimorphic infections in C57BL/6 mice. Gonadal steroids can modulate sex differences in response to both viruses. Here, the effect of sex chromosomal complement in response to viral infection was evaluated using four core genotypes (FCG) mice, where the <it>Sry </it>gene is deleted from the Y chromosome, and in some mice is inserted into an autosomal chromosome. This results in four genotypes: XX or XY gonadal females (XXF and XYF), and XX or XY gonadal males (XXM and XYM). The FCG model permits evaluation of the impact of the sex chromosome complement independent of the gonadal phenotype.</p> <p>Methods</p> <p>Wild-type (WT) male and female C57BL/6 mice were assigned to remain intact or be gonadectomized (Gdx) and all FCG mice on a C57BL/6 background were Gdx. Mice were infected with either CVB3 or mouse-adapted IAV, A/Puerto Rico/8/1934 (PR8), and monitored for changes in immunity, virus titers, morbidity, or mortality.</p> <p>Results</p> <p>In CVB3 infection, mortality was increased in WT males compared to females and males developed more severe cardiac inflammation. Gonadectomy suppressed male, but increased female, susceptibility to CVB3. Infection with IAV resulted in greater morbidity and mortality in WT females compared with males and this sex difference was significantly reduced by gonadectomy of male and female mice. In Gdx FCG mice infected with CVB3, XY mice were less susceptible than XX mice. Protection correlated with increased CD4+ forkhead box P3 (FoxP3)+ T regulatory (Treg) cell activation in these animals. Neither CD4+ interferon (IFN)Îł (T helper 1 (Th1)) nor CD4+ interleukin (IL)-4+ (Th2) responses differed among the FCG mice during CVB3 infection. Infection of Gdx FCG mice revealed no effect of sex chromosome complement on morbidity or mortality following IAV infection.</p> <p>Conclusions</p> <p>These studies indicate that sex chromosome complement can influence pathogenicity of some, but not all, viruses.</p

    Inactivation of nuclear GSK3 beta by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response

    Get PDF
    Variable, diversity and joining (V(D)J) recombination and immunoglobulin class switch recombination (CSR) are key processes in adaptive immune responses that naturally generate DNA double-strand breaks (DSBs) and trigger a DNA repair response. It is unclear whether this response is associated with distinct survival signals that protect T and B cells. Glycogen synthase kinase 3 beta (GSK3 beta) is a constitutively active kinase known to promote cell death. Here we show that phosphorylation of GSK3 beta on Ser(389) by p38 MAPK (mitogen-activated protein kinase) is induced selectively by DSBs through ATM (ataxia telangiectasia mutated) as a unique mechanism to attenuate the activity of nuclear GSK3 beta and promote survival of cells undergoing DSBs. Inability to inactivate GSK3 beta through Ser(389) phosphorylation in Ser(389)Ala knockin mice causes a decrease in the fitness of cells undergoing V(D)J recombination and CSR. Preselection-Tcrb repertoire is impaired and antigen-specific IgG antibody responses following immunization are blunted in Ser(389)GSK3 beta knockin mice. Thus, GSK3 beta emerges as an important modulator of the adaptive immune response.We thank Dr T. Honjo and Dr K. Otsu for the generation of the original AID deficient mice and the p38 flox/flox mice, respectively. We thank C. Charland for flow cytometry analysis and cell sorting, the Vermont Cancer Center DNA Sequencing Facility and the University of Vermont College of Med. Microscopy Imaging Center for their services. We thank Dr D.R. Green and Dr R.C. Budd for helpful discussion regarding the mechanisms of cell death and reagents. This work was supported by NIH grant R01 AI051454 (M.R. and T.M.T.), P20 GM103496 (T.M.T.) NIH grant R37 GM41052 (M.S.K.) and Lake Champlain Cancer Research Organization (M.R.).S

    A genetic locus complements resistance to Bordetella pertussis-induced histamine sensitization.

    Get PDF
    Histamine plays pivotal role in normal physiology and dysregulated production of histamine or signaling through histamine receptors (HRH) can promote pathology. Previously, we showed that Bordetella pertussis or pertussis toxin can induce histamine sensitization in laboratory inbred mice and is genetically controlled by Hrh1/HRH1. HRH1 allotypes differ at three amino acid residues with

    The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells

    Get PDF
    Interleukin (IL) 6 is a proinflammtory cytokine produced by antigen-presenting cells and nonhematopoietic cells in response to external stimuli. It was initially identified as a B cell growth factor and inducer of plasma cell differentiation in vitro and plays an important role in antibody production and class switching in vivo. However, it is not clear whether IL-6 directly affects B cells or acts through other mechanisms. We show that IL-6 is sufficient and necessary to induce IL-21 production by naive and memory CD4+ T cells upon T cell receptor stimulation. IL-21 production by CD4+ T cells is required for IL-6 to promote B cell antibody production in vitro. Moreover, administration of IL-6 with inactive influenza virus enhances virus-specific antibody production, and importantly, this effect is dependent on IL-21. Thus, IL-6 promotes antibody production by promoting the B cell helper capabilities of CD4+ T cells through increased IL-21 production. IL-6 could therefore be a potential coadjuvant to enhance humoral immunity

    eae36, a Locus on Mouse Chromosome 4, Controls Susceptibility to Experimental Allergic Encephalomyelitis in Older Mice and Mice Immunized in the Winter

    No full text
    Genetic factors are believed to contribute to multiple sclerosis (MS) susceptibility; however, strong evidence implicating intrinsic and environmental factors in the etiopathogenesis of MS also exists. Susceptibility to experimental allergic encephalomyelitis (EAE), the principal animal model of MS, is also influenced by nongenetic factors, including age and season at immunization. This suggests that age- and season-by-gene interactions exist and that different susceptibility loci may influence disease as a function of the two parameters. In this study, linkage analysis based on genome exclusion mapping was carried out using age and season at immunization restricted cohorts of (B10.S Ă— SJL/J) F(2) intercross mice in an effort to identify such linkages. Significant linkage of EAE to eae4 and eae5 was detected with 6- to 12-week-old and summer cohorts. In contrast, significant linkage of EAE to eae4 and eae5 was not detected with the >12-week-old and winter/spring populations. Rather, significant linkage to D4Mit203 at 128.50 Mb on chromosome 4 was detected with animals that were >12 weeks old at the time of immunization or were immunized in the winter. This previously unidentified locus has been designated eae36. These results support the existence of age- and season-by-gene-specific interactions in the genetic control of susceptibility to autoimmune inflammatory disease of the central nervous system and suggest that late-onset MS may be immunogenetically distinct
    • …
    corecore