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Abstract

Experimental autoimmune orchitis (EAO), the principal model of non-infectious testicular inflammatory disease, can be
induced in susceptible mouse strains by immunization with autologous testicular homogenate and appropriate adjuvants.
As previously established, the genome of DBA/2J mice encodes genes that are capable of conferring dominant resistance to
EAO, while the genome of BALB/cByJ mice does not and they are therefore susceptible to EAO. In a genome scan, we
previously identified Orch3 as the major quantitative trait locus controlling dominant resistance to EAO and mapped it to
chromosome 11. Here, by utilizing a forward genetic approach, we identified kinesin family member 1C (Kif1c) as a
positional candidate for Orch3 and, using a transgenic approach, demonstrated that Kif1c is Orch3. Mechanistically, we
showed that the resistant Kif1cD2 allele leads to a reduced antigen-specific T cell proliferative response as a consequence of
decreased MHC class II expression by antigen presenting cells, and that the L578RP578 and S1027RP1027 polymorphisms
distinguishing the BALB/cByJ and DBA/2J alleles, respectively, can play a role in transcriptional regulation. These findings
may provide mechanistic insight into how polymorphism in other kinesins such as KIF21B and KIF5A influence susceptibility
and resistance to human autoimmune diseases.
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Introduction

Experimental autoimmune orchitis (EAO) is a model of

idiopathic male infertility mediated by autoreactive T cells [1,2].

It can be induced in mice by active immunization with mouse

testicular homogenate (TH) emulsified in complete Freund’s

adjuvant (CFA) and Bordetella pertussis toxin (PTX) [3]. In

genetically susceptible mice, the inflammatory lesions comprised

of monocytes, macrophages, lymphocytes, neutrophils, and

eosinophils are mainly found in the seminiferous tubules of the

testes in association with aspermatogenesis [3]. We previously have

shown that MHC class II restricted CD4+ T cells are the primary

effectors in autoimmune orchitis [4,5]. However, recent evidence

suggests the involvement of CD8+ T cells during the onset and

maintenance of chronic inflammation [6,7].

Various strains of inbred mice respond differently to EAO

induction, indicating that susceptibility is genetically controlled.

Previously, it was shown that BALB/cByJ (CByJ) mice are highly

susceptible to EAO [8] whereas DBA/2J (D2) and (CByJ6D2)F1

hybrids (CD2F1) are resistant [3,9]. This demonstrates that

resistance to EAO is inherited as a dominant phenotype in this

strain combination. Additionally, resistance can be adoptively

transferred to CByJ mice with CD2F1 primed splenocytes [10].

Therefore, the factors that regulate EAO resistance appear to be

governed by an immune-mediated dominant negative mechanism.

Genome exclusion mapping was utilized to map the immuno-

suppressive genes regulating dominant resistance to EAO [10]

with significant linkages to multiple loci residing on chromosomes

(Chr) 1 and 11 [10]. Of these, Orch3 on Chr11 displayed the most

significant linkage and accounted for the majority of disease

resistance seen in D2 mice.

In this study, congenic mapping was employed to restrict Orch3

to a ,1.3 Mb interval that identified Kif1c (kinesin family member

1c) as a positional candidate. By generating CByJ.CD11B-Kif1cD2

transgenic (Tg) mice, we demonstrated that Kif1c underlies Orch3.

Mechanistically, we showed that the resistant Kif1cD2 allele leads to

reduced antigen (Ag)-specific T cell responsiveness as a conse-

quence of decreased MHC class II expression by myeloid cells,

and that the L578RP578 and S1027RP1027 polymorphisms

distinguishing the CByJ and D2 alleles, respectively, can play a

role in regulating gene transcription.

PLOS Genetics | www.plosgenetics.org 1 December 2012 | Volume 8 | Issue 12 | e1003140



Results

Congenic mapping of Orch3
In the genome scan in which Orch3 was identified, D11Mit219,

D11Mit8, and D11Mit118 exhibited the most significant linkage

[10]. As the first step in the positional-candidate gene cloning of

Orch3, we used marker-assisted selection to introgress the Orch3D2

allele onto the susceptible CByJ background. Next, we generated

overlapping interval specific recombinant congenic (ISRC) lines

(Figure S1 and Figure S2) and studied them in a stepwise fashion

for susceptibility and resistance to EAO (Figure 1). Importantly,

since resistance to EAO is inherited as a dominant trait in CD2F1

hybrid mice [10], and the pathology indices (PI) between

heterozygous and homozygous congenic lines were not signifi-

cantly different (data not shown), the data were pooled for each

line. Control parental CByJ mice were clearly susceptible to EAO,

with an average PI of 4.0, whereas D2 and CD2F1 hybrid mice

were resistant, with an average PI of 0.1 and 0.8, respectively

(Figure 2). C.D2-Es3/Hba, C.D2-3.1, C.D2-5, C.D2-8.4, C.D2-

8.5, and C.D2-9 mice were also susceptible with average scores of

3.6, 4.9, 2.6, 3.7, 3.8, and 4.0, respectively. In contrast, C.D2-Evi2,

C.D2-3, C.D2-3.2, C.D2-8 and C.D2-8.1 thru -8.3 were resistant

with average scores of 0.2, 0.6, 1.3, 1.7, and #1.4, respectively.

These data placed Orch3 within the interval between D11Mit298

(69339966–69340164) and NLR (nucleotide-binding domain and

leucine rich repeat containing) family, pyrin domain containing

1A, B, C (Nlrp1a/b/c) at 70.9–71.0 Mb (70904699–71098734 bp).

Importantly, this excluded transient receptor potential cation

channel, subfamily V, member 1 (Trpv1) at 73.0 Mb (73047794–

73074744) underlying Idd4.1, a quantitative trait loci (QTL)

controlling susceptibility to type 1 diabetes in the NOD mouse

[11], and inducible nitric oxide synthase (Nos2/iNos), important in

inflammatory diseases including autoimmunity [12,13], as candi-

date genes for Orch3. Nlrp1a/b/c is one of two highly polymorphic

positional candidate loci of immunological relevance within the

interval, the second gene being kinesin family member 1C (Kif1c).

However, Nlrp1c could be excluded as a candidate since it is a

pseudogene (www.informatics.jax.org) and Nlrp1a and -b are less

likely to be relevant to Orch3 than Kif1c due to discordance

between EAO susceptibility and Nlrp1a and -b alleles among CByJ,

BALB/cJ and D2 mice (www.informatics.jax.org) [14].

CByJ.CD11B-Kif1cD2 Tg (Tg-Kif1cD2) mice are resistant to
EAO

To confirm that Kif1c was the most likely candidate gene for

Orch3 and to definitively exclude Nlrp1a/b as a positional

candidate, we generated overlapping sub-ISRC congenic lines

across the C.D2-3.2 interval and studied them for susceptibility to

EAO (Figure 3). Statistically significant differences in EAO

susceptibility between C.D2-3.2, C.D2-3.2c and CByJ mice were

observed (Figure 3, right panel). In contrast, the severity of EAO in

C.D2-3.2a and C.D2-3.2b was not significantly different from that

of CByJ mice. Moreover, dominant resistance co-segregated with

Orch3 as evidenced by the fact that no significant difference in the

PI between homozygous and heterozygous mice was detected

across all congenic lines studied (Figure 2 and Figure 3). Taken

Figure 1. Histopathology of autoimmune orchitis. (A, C) Cross
section of normal testis histology in an immunized C.D2-3 mouse: (A)
Seminiferous tubules appear normal; (C) A seminiferous tubule (ST)
containing normal meiotic spermatocytes and spermatids, with intact
tubular boundary (arrows). (B, D) CByJ mouse with sever and diffuse
orchitis: (B) All seminiferous tubules are necrotic and have lost cell
nuclear staining; (D) Sever orchitis in one seminiferous tubule (arrows)
that contains numerous neutrophils and occasional multinuclear giant
macrophages (double arrow); the tubular boundary (arrows) is poorly
defined. (H&E; A and B, 64; C and D, 640).
doi:10.1371/journal.pgen.1003140.g001

Author Summary

Although the etiology of autoimmunity is not well known,
a variety of studies have demonstrated that genetic
predisposition is a major contributor to disease suscepti-
bility and resistance. The major histocompatibility complex
(MHC) is the primary genetic determinant of autoimmune
disease susceptibility with multiple additional interacting
loci required. However, the identification and character-
ization of non–MHC genes has been problematic, since
most autoimmune diseases are polygenic with the
individual genes exhibiting only partial or minimal
penetrance. We previously identified Orch3 (mouse chro-
mosome 11) as the most important immune-suppressive
locus controlling dominant resistance to autoimmune
orchitis, the principal animal model of non-infectious
testicular inflammatory/autoimmune disease. Here, using
congenic mapping, we identified kinesin family member
1C (Kif1c) as a positional candidate for Orch3. Furthermore,
over-expression of the Kif1c resistant allele in susceptible
mice rendered animals autoimmune orchitis resistant,
demonstrating that Kif1c is Orch3. We propose that Kif1c
plays an immunoregulatory role by controlling the levels
of MHC class II in antigen presenting cells and conse-
quently impacting autoreactive orchitogenic T cell re-
sponses. These finding are particularly relevant since
polymorphism in other kinesins such as KIF21B and KIF5A
have been associated with susceptibility and resistance to
human autoimmune disease.

Orch3/Kif1c Controls EAO Resistance
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Figure 2. Congenic mapping places Orch3 within the Kif1c/Nlrp1a/b/c interval. For convenience, D2 alleles have been shaded. The
significance of differences in severity of EAO among CByJ, CD2F1 hybrids and CD2-ISRC lines was determined using the Kruskal-Wallis test (overall p-
value,0.0001) followed by Dunn’s multiple comparison test. Region outlined in blue depicts the location of Orch3.
doi:10.1371/journal.pgen.1003140.g002

Figure 3. Identification of Orch3 as Kif1c. (CD2-3.26CByJ)6CByJ backcross mice were screened from recombinants using microsatellite markers
spanning the Orch3 interval. Three sub-ISRC lines were identified, fixed and homozygous progeny studied for susceptibility to EAO (D = D2 allele;
C = CByJ allele). The significance of differences in EAO among CByJ, CD2-3.2a, CD2-3.2b, CD2-3.2c and Tg-Kif1cD2 transgenic mice was determined
using the Kruskal-Wallis test (overall p-value,0.0001) followed by Dunn’s multiple comparison test (**p,0.01). Region outlined in red reflects
location of Orch3 based on high resolution congenic mapping relative to the lower resolution mapping outlined in blue.
doi:10.1371/journal.pgen.1003140.g003

Orch3/Kif1c Controls EAO Resistance
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together, these data restrict Orch3 to a ,1.3 Mb interval distal of

D11Mit298 (69339966–69340164) and proximal of D11Die30

(70552627–70552762) which includes Kif1c but not Nlrp1a and

Nlrp1b (Figure 3, left panel), thereby excluding them as positional

candidates for Orch3.

Given the role of Kif1c in macrophage function [15], and that

kinesins have been implicated in antigen processing and presen-

tation [16], we decided to directly test the hypothesis that Orch3 is

Kif1c. We generated a transgenic mouse line that selectively

expressed the resistant Kif1cD2 allele on the susceptible CByJ

background using the human CD11B/ITGAM regulatory elements

for macrophage/myeloid-specific expression of Kif1cD2 (Figure 4A).

The expression of the transgene did not affect macrophage/

myeloid cell generation or homeostasis as similar percentages of

splenic F4/80+ (Figure 4B) and CD11b+ cells (Figure 4C) were

detected on Tg-Kif1cD2 mice compared to negative littermate

control (NLC) mice. In addition, no differences in the expression

of CD40 or CD86 were observed between strains at baseline (data

not shown). Compared to NLC, greater Kif1c protein expression

was seen in thioglycolate-induced Tg-Kif1cD2 cells (Figure 4D).

Despite the existence of polymorphisms upstream of Kif1c in

potential regulatory regions (http://phenome.jax.org/), we did not

observe differences in Kif1c expression at the mRNA level between

the Kif1cCByJ and Kif1cD2 alleles (Figure 4E). NLC and Tg-Kif1cD2

mice were studied for susceptibility to EAO. The expression of

Kif1cD2 in CD11b+ cells protected susceptible CByJ mice from

developing EAO (Figure 3, right panel). This finding establishes

Kif1c as being Orch3.

Tg expression of Kif1cD2 downregulates MHC class II
expression and antigen presenting function of CD11b+

cells
To better understand the mechanism of resistance to EAO

conferred by Kif1cD2, microarray analyses were performed on

CD11b+ cells from NLC and Tg-Kif1cD2 mice. Using a false

discovery rate (FDR) cutoff of 0.05, we determined that 164 genes

were differentially expressed between NLC and Tg-Kif1cD2

CD11b+ cells (Table S1). An analysis for functional inference

using Ingenuity Pathway Analysis (Ingenuity Systems, www.

ingenuity.com) revealed that T helper cell differentiation was the

most significant pathway influenced by Kif1c (p,2.80 E-10; Figure

S3 and Table S2). In addition, 18 of the top 20 pathways

implicated a role for MHC class II, including antigen presentation.

Indeed, compared to NLC CD11b+ cells, we observed a marked

down regulation in MHC class II gene expression by Tg-Kif1cD2

CD11b+ cells (Table S1 and Figure 5A, dark blue dots). This is

consistent with the role of kinesin as the motor that drives MHC

class II to the plus end of microtubules toward the cell surface [16].

To corroborate diminished class II expression, flow cytometric

analysis was performed using naı̈ve TCRb2CD192CD11b+

splenocytes. The results presented in Figure 5B show lower

MHC class II expression on Tg-Kif1cD2 cells compared to NLC,

D2, and C.D2-3.2 mice. Despite the differences in MHC II

expression, no significant difference in the proportion of total

splenic CD11b+ cells was observed (Figure 4C). Therefore,

expression of the transgene in CD11b+ cells negatively regulates

MHC II protein levels.

Figure 4. Generation of BALB/cByJ-CD11B-Kif1cD2 transgenic (Tg-Kif1cD2) mice. (A) Schematic representation of the Kif1c gene used to
generate the transgenic mice showing the promoter (CD11B/ITGAM), and the Kif1c gene, followed by the hGH/polyA signal sequence. Arrows indicate
PCR-primers for screening. (B and C) Percentage of splenic F4/80+ (B) and CD11b+ (C) cells of Tg-Kif1cD2 and NLC. The analysis was performed on
gated live cells according to their FSC vs. SSC profile. Statistical significance was determined using the Mann-Whitney U test. Data represent the mean
6 SEM of at least 5 individual mice. (D) Kif1c expression in thioglycolate-induced adherent cells by Western blotting using whole-cell extracts and the
anti-Kif1c mAb. Actin was used as a loading marker. (E) mRNA expression of Kif1c was measured from sorted TCRb2CD192CD11b+ myeloid cells of
CByJ mice and compared with TCRb2CD192CD11b+ myeloid cells of D2 mice. b2-microglobulin and GAPDH were used as an endogenous control.
Data represent the mean 6 SEM of two experiments (pool of 5 animals/each).
doi:10.1371/journal.pgen.1003140.g004

Orch3/Kif1c Controls EAO Resistance

PLOS Genetics | www.plosgenetics.org 4 December 2012 | Volume 8 | Issue 12 | e1003140



To further establish a functional role for the differential

expression of MHC class II, we assessed antigen presentation by

examining Ag-specific T cell proliferation. NLC and Tg-Kif1cD2

mice were immunized with ovalbumin (OVA)+CFA or proteolipid

protein (PLP) 180–199 peptide (PLP180–190)+CFA on d0 and d7.

Spleen and lymph nodes (LN) were harvested at d10 and the

proliferative responses evaluated. Compared to NLC antigen

presenting cells (APCs), T cell proliferation in response to OVA

was significantly reduced when T cells were stimulated in the

presence of Tg-Kif1cD2 APCs (Figure 6A). Similar results were

observed for PLP180–199-dependent T cell responses (Figure 6B).

These data show that expressing the Kif1cD2 allele in CD11b+ cells

confers resistance to EAO by modulating APC function. Taken

together our data suggest that Kif1c coding region polymorphism

controls susceptibility to autoimmune orchitis.

Amino acid polymorphisms at residues 578 and 1027 on
the C-terminal end of Kif1c regulate its function

Kif1c alleles possess amino acid substitutions at residues 578,

1027, and 1066 [17]. Four haplotypes have been identified: LSS

(Kif1cCByJ), PSS, PPS, and PPY (Kif1cD2). In addition, it has been

shown that the C-terminal region of KIF1c is involved in protein-

protein interactions and cargo function [17–20]. Therefore,

substitutions at 578, 1027, and/or 1066 may have a significant

impact on KIF1c function. Given that KIF17b has been shown to

control CREM-dependent transcription by regulating the intracel-

lular location of the transcriptional coactivator ACT (activator of

CREM in testis) [21,22], and CREM binding to the Il2 promoter

suppresses its activity [23], we evaluated the effect of LSS Kif1cCByJ

and PPY Kif1cD2 alleles on Il2 transcriptional activity as an in vitro

assay of KIF1c allelic function. Jurkat cells were co-transfected with

a plasmid containing the PPY Kif1cD2 allele, the LSS Kif1cByJ allele,

or an empty plasmid, and an Il2-promoter luciferase reporter. Cells

were then activated with phorbol myristate acetate (PMA) and

calcimycin, a calcium ionophore, and the luciferase activity

quantified. Jurkat cells that were transfected with the plasmid

containing the PPY Kif1cD2 allele displayed significantly decreased

luciferase activity (mean decrease 31.4668.59%, P = 0.03) as

compared to the plasmid containing the LSS Kif1cCByJ allele or

the control plasmid (Figure 7A). These data demonstrate the

functionality of the KIF1c structural polymorphism.

To further characterize the amino acid(s) responsible for the

observed differences on Il2-promoter activity associated with the

alleles, we replaced the D2-P578RL578 (LPY-KIF1c) or D2-

P1027RS1027 (PSY-KIF1c). Jurkat cells were co-transfected with

the plasmids containing the wild type D2 PPY-KIF1c allele, LPY-

KIF1c (P578RL578) or PSY-KIF1c (P1027RS1027) mutant alleles,

or a control plasmid, and Il2-promoter luciferase reporter. Cells

were activated with PMA and calcimycin and luciferase activity

was assessed. As shown in Figure 7B, LPY-KIF1c and PSY-KIF1c

mutants resulted in increased Il2-promoter luciferase activity

compared to the D2 PPY-KIF1c allele. Taken together, our data

demonstrate that structural polymorphisms at position 578 and

1027 are critical for KIF1c allelic functions.

Discussion

EAO is an organ-specific autoimmune disease that is a model of

immunological male infertility [1,2]. We previously demonstrated

Figure 5. Analysis of MHC II expression on splenic CD11b+ myeloid cells. (A) Scatterplot of genes differentially expressed in splenic
TCRb2CD192CD11b+ myeloid cells of Tg-Kif1cD2 and NLC mice as determined by microarray. There were 164 genes differentially expressed
(FDR#0.05) and for each gene, the log2 fold change was plotted on the ordinate against the -log10 p-value, plotted on the abscissa. Each data point
represents the log2 fold change (Tg-Kif1cD2 minus NLC) for each gene. Dark blue data points indicate H2 genes that were downregulated in splenic
CD11b+ cells of Tg-Kif1cD2 mice. (B) Flow cytometric analysis of the frequency of TCRb2CD192CD11b+-myeloid cells expressing MHC II in the spleen
of Tg-Kif1cD2, D2, D.2-C3.2, and NTC. Statistical significance was determined using the Kruskal-Wallis test (overall ***p-value,0.0001) followed by
Dunn’s multiple comparison test (**p,0.01, *p,0.05). Data represent the mean 6 SEM of at least 5 individual mice.
doi:10.1371/journal.pgen.1003140.g005

Figure 6. Evaluation of Ag-specific T cell stimulatory capacity
of APCs. Ag-specific T cell proliferative responses were evaluated by
[3H] thymidine incorporation. (A) OVA-specific CD4 T cells, and (B)
PLP180–199-specific CD4 T cells from NLC mice were co-cultured with T
cell-depleted/mitomycin C-treated/OVA pulsed APCs (A) and PLP180–199

pulsed APCs (B). Open bars are Tg-Kif1cD2-APCs, and closed bars are
NLC-APCs. Each bar represents the mean cpm 6 SEM of 3 independent
experiments. The significance of the differences was determined by
two-way ANOVA. OVA-specific response: effect of [OVA] (p,0.0001);
effect of strain (p,0.0001); interaction (p = 0.08). PLP180–199-specific
response: effect of [PLP180–199] (p,0.0001); effect of strain (p,0.0001);
interaction (p = 0.08).
doi:10.1371/journal.pgen.1003140.g006

Orch3/Kif1c Controls EAO Resistance

PLOS Genetics | www.plosgenetics.org 5 December 2012 | Volume 8 | Issue 12 | e1003140



that genetic control of EAO is complex and involves both H2-

linked (Orch1) and non-H2-linked (Orch3, Orch4, and Orch5) genes

[24,25]. The H2-linked immune response genes primarily control

susceptibility to EAO, whereas the non-H2-linked genes suppress

the phenotypic expression of disease associated with a susceptible

Orch1/H2 allele [9]. Here we report the identification of Orch3 as

Kif1c that suppresses EAO by decreasing MHC class II expression

and impairing APC function. Importantly, Kif1c may be a shared-

autoimmune gene controlling susceptibility to experimental

allergic encephalomyelitis (EAE) [26]. Eae7, Eae22, and Eae23

are linked to Orch3 [27], and CByJ and D2 mice are susceptible

and resistant to EAE, respectively [28].

With the exception of tyrosine kinase-2 (Tyk2), in which a rare

single nucleotide polymorphism in a well conserved APE motif

within the pseudokinase domain is fully penetrant in controlling

susceptibility to autoimmune diseases [29,30], the vast majority of

non-MHC autoimmune loci identified to date are QTL that

exhibit only partial to minimal penetrance. This has proven to be

problematic as researchers have attempted to positionally clone

and characterize such genes [31]. The fact that Orch3/Kif1c

controls a dominant negative immunoregulatory mechanism that

suppresses autoimmune orchitis with a high degree of penetrance

is unique. Because EAO resistance is conferred in a dominant

fashion in this model, an animal must be Orch3CByJ/Kif1cCByJ

homozygous to permit disease progression. By using a forward

genetic approach, we have now established that Orch3 is Kif1c

which, in isolation, controls resistance to EAO with a remarkable

degree of penetrance.

Using a transgenic approach we demonstrated that Kif1c is

Orch3, and that expression of the resistant Kif1cD2 allele by CD11b+

cells of CByJ mice confers complete protection from the

development of EAO. Our data are consistent with the growing

number of CD11b+ myeloid cell types with immunosuppressive

activity [32,33]. Indeed, resistance to autoimmune type I diabetes

in NOD mice and EAE correlated with the presence of

immunomodulatory CD11b+ myeloid cells [34–36] and the

capacity of these cells to maintain a proper T regulatory cell

function [37].

Kinesin family members are involved in the activation of

immune cells and inflammatory responses [38,39], and autoim-

mune disease GWAS identified KIF21B and KIF5A as candidates

for autoimmune disease genes [40,41], suggesting an immunoreg-

ulatory role for kinesin family members. In addition, kinesin

proteins have been identified as the major molecular motor of

microtubule-based intracellular transport [42]. Kif1c is expressed

in a variety of tissues [43] and overexpression of a dominant

negative form disrupts molecular motor-dependent Golgi-to-

Endoplasmic Reticulum (ER) retrograde vesicular transport [18].

It is known that Kif1c alleles possess amino acid substitutions at

residues 578, 1027, and 1066 [17]. Here, we demonstrated that

residues 578 and 1027 are functionally significant. Although the

amino acid polymorphism at residue 1027 is not in an

evolutionarily conserved domain [17], it is in the C-terminal

region believed to participate in cargo binding. In fact, alterations

of this domain have been shown to modify in vivo kinesin protein

function [19]. Moreover, it has been shown that the C-terminal

tail domain of KIF1c (amino acids 811–1090) is involved in the

interaction with bicaudal-D-related protein 1 (BDRP1) and this

interaction regulates secretory transport required for neurite

development [20]. Therefore, the ability of KIF1c to bind and

transport cargo may be altered by polymorphism in this region.

However, motor-dependent Golgi-to-ER transport functions

normally in Kif1c knockout mice [44]. Immunohistochemical

staining partially co-localized KIF1c with the Golgi marker

CTR433, suggesting that KIF1c may also be involved in transport

around the Golgi apparatus rather than only Golgi-to-ER

transport. Accordingly, Wubbolts, et. al. [16] showed that kinesin

plays a role in the vesicular transport of MHC II-containing

lysosomes from the microtubule organizing center region towards

the cell surface. Here, we provide evidence that the resistant

Kif1cD2 allele negatively regulates the expression of MHC II

proteins on APCs, since Tg-Kif1cD2 CD11b+ cells express lower

mRNA and protein levels. The reduction in MHC II expression

by CD11b+ Tg-Kif1cD2 cells was directly correlated with impaired

antigen presentation as reflected by diminished Ag-specific T cell

proliferative response. Whether amino acids at position 578 and

1027 on KIF1c are involved in MHC II expression is currently

under investigation. Taken together, our results nevertheless

provide mechanistic insight into how polymorphism in other

kinesins including KIF21B and KIF5A influence human autoim-

mune disease susceptibility.

Materials and Methods

Ethics statement
Mice were housed at 25uC with 12/12-h light-dark cycles and

40–60% humidity. The experimental procedures performed in this

study were under the guidelines of the Animal Care and Use

Committees of the University of Vermont (Burlington, VT) and

University of Illinois at Urbana-Champaign (Urbana, IL).

Animals
BALB/cByJ (CByJ), DBA/2J (D2), and (BALB/cByJ6DBA/2J)

F1 hybrid (CD2F1) mice were purchased from The Jackson

Laboratory (Bar Harbor, ME). The congenic lines in this study

were generated using (BALB/cAnPt6DBA/2NCr)6BALB/cAnPt

backcross mice [45]. Third generation backcross mice heterozy-

gous at Evi2 or at Hba and Es3 were selected and backcrossed for

six generations to BALB/cAnPt mice and fixed by brother-sister

mating to generate the C.D2-Evi2 and C.D2-Hba/Es3 lines.

Overlapping interval specific recombinant congenic (ISRC) lines

were generated by crossing C.D2-Evi2 mice to CByJ mice. F2

hybrids were genotyped using tail snip DNA and PCR with Chr11

microsatellite markers discriminating CByJ and D2 mice across

the Orch3 candidate interval. Founders were analyzed for

background contamination at a density of 2–5 cM and mice

Figure 7. Structural polymorphisms at amino acid residues 578
and 1027 influence KIF1c function. Jurkat cells were co-transfected
with a plasmid containing the (A) Kif1cD2 (open bar), Kif1cCByJ (grey bar)
alleles, or control plasmid (black bar), or (B) Kif1cD2 (PPY; open bar),
mutant 578 (LPY; left striped bar), or mutant 1027 (PSY; right striped
bar) plasmids, and Il2 promoter luciferase reporter. Cells were
stimulated for 3 hours with PMA and calcimycin, and the luciferase
activity was quantified. Data are representative of two independent
experiments.
doi:10.1371/journal.pgen.1003140.g007
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carrying CByJ alleles at all background marker loci were

backcrossed an additional two generations to CByJ mice. The

lines were fixed by brother-sister mating to generate the C.D2-3,

C.D2-5, C.D2-8, and C.D2-9 ISRC lines. Similarly, higher order

resolution mapping panels of ISRC lines were generated by

screening (C.D2-36CByJ)6CByJ, (C.D2-86CByJ)6CByJ and

(C.D2-3.26CByJ)6CByJ backcross mice for recombinants. The

genealogy and complete genotypes of the C.D2 congenic mice

used in this study are given in Figure S1 and Figure S2,

respectively.

The CByJ.CD11B-Kif1cD2 transgenic (Tg-Kif1cD2) mice were

generated by microinjection with a construct containing the

human CD11B/ITGAM promoter [46], Kif1cD2 cDNA, and the

human growth hormone (hGH) polyA signal [47] into C fertilized eggs

at the University of Vermont Transgenic/Knockout Facility. Mice

were screened for hGH gene by PCR using hGH Fwd 59 TAG

GAA GAA GCC TAT ATC CCA AAG G 39, hGH Rev 59 ACA

GTC TCT CAA AGT CAG TGG GG 39 primers. Proinsulin

Fwd 59 CTA GTT GCA GTA GTT CTC CAG 39 and proinsulin

Rev 59 CCT GCC TAT CTT TCA GGT C 39 primers were used

as internal control.

PCR–based restriction fragment length polymorphism
(RFLP)

Genomic DNA was PCR-amplified using standard conditions

and the following primers designed around a polymorphism in

Nlrp1a: 59-GGGCACATGGATTCAGAGAT-39; 59-AGA-

GACCCCACCCAACTTC-39. 10 ml of PCR reaction was

digested using 5 units of ApaLI in 50 ml of 16 NEBuffer 4 (New

England BioLabs, Inc., Ipswich, MA) for 1 hour at 37uC.

Resulting fragments were electrophoresed in 2% agarose gels

and visualized by ethidium bromide.

EAO induction
Six-12 week old mice were immunized as previously described

[9] with 10 mg of TH plus CFA (Sigma-Aldrich, St. Louis, MO)

supplemented with 200 mg of Mycobacterium tuberculosis H37Ra

(Difco Laboratories, Detroit, MI) in conjunction with PTX (List

Biological Laboratories Inc., Campbell, CA). EAO was evaluated

at 25–30 days post-injection. The testes were processed for

histological examination as previously described [9]. Histopatho-

logic analysis was carried out in a double-blind manner with each

testis being scored individually on a PI from 0–10 as described

previously [9]. The overall score for each animal was calculated as

the average of both testes with the strain means representing the

average of the averages.

Cell preparation and Western blotting
Spleens were collected from CByJ and Tg-Kif1cD2 mice, and

single cell suspensions were prepared by passing the cells through a

50 mm nylon mesh (Small parts Inc, Miami Lakes, FL).

Erythrocytes were lysed using complete Geyes solution, washed

two times and plated to obtain adherent cells. Adherent cells were

removed by treating with 0.025% Trypsin-EDTA (Invitrogen,

Carlsbad, California), washed three times and pelleted. Whole-cell

lysates were prepared in Triton lysis buffer and equal amounts of

protein were then separated via SDS-PAGE and transferred to

nitrocellulose membranes as described previously [48]. Primary

antibodies used for Western blot include anti-Kif1c and anti-Actin

(Santa Cruz Biotechnology Inc., Santa Cruz, CA). Bound

antibody was visualized by peroxidase-conjugated secondary

antibody and detected by chemiluminescence (Kirkegaard and

Perry Laboratories, Gaithersburg, MD).

FACS sorting and flow cytometric analysis
NLC and Tg-Kif1cD2 myeloid cells from erythrocyte-free spleens

were first enriched by negative selection (using magnetic beads,

Qiagen, Hilden, Germany) to deplete cells expressing CD8, CD4,

and IgM. For FACS isolation, negatively selected enriched-

myeloid cells were stained with anti-CD11b–APCCy7 (BD

Pharmingen. Franklin Lakes, NJ), anti-CD11c-PECy5.5 (Invitro-

gen, Camarillo, CA), anti-TCRb–FITC, and anti-IA/IE-PE

(eBioscience, San Diego, CA), and sorted on a FACSAria (BD

Biosciences, San Jose, CA) by gating in the TCRb2IA/

IE+CD11c2CD11b+ myeloid cell population. Antibodies against

B220 and CD19 (eBioscience) were also used for flow cytometry.

Microarray analysis
Total RNA was extracted and purified from TCRb2IA/

IE+CD11c2CD11b+ myeloid cells from naı̈ve NLC and Tg-

Kif1cD2 mice (n = 6 to 10 mice/strain) using RNeasy isolation

reagent (Qiagen Inc.). Purified RNA was quantified using a

Nanodrop ND1000TM spectrophotometer (Thermo Scientific,

Wilmington, DE) and quality was assessed using an Agilent 2100

bioanalyzer (Agilent Technologies, Palo Alto, California). The

RNA integrity number of all samples was greater than 8. For

microarray analysis, two RNA pools were created so that each

pool contained RNA from 3 to 5 mice, and two arrays per strain

were analyzed.

RNA amplification and microarray analysis was performed at

UVM Microarray Core Facility using previously described

protocols [49]. Briefly, 2 mg of total RNA from each pooled

sample were reverse transcribed to the single stranded cDNA using

T7-oligo(dT) primer. T4 DNA polymerase was used to synthesize

double-stranded cDNA, which served as a template for in vitro

transcription using T7 RNA polymerase to produce biotinylated

cRNA. The biotinylated cRNAs were fragmented into 50- to 200-

base fragments and then hybridized to GeneChip Mouse Genome

430A 2.0 Arrays for 16 h at 45uC in a rotating Affymetrix

GeneChip Hybridization Oven 320. After hybridization, arrays

were washed and stained with streptavidin-phycoerythrin on an

automated Affymetrix GeneChip Fluidic Station F450. The arrays

were scanned with an Affymetrix GeneChip Scanner 2700 and the

images quantified using Affymetrix GeneChip Operating Soft-

ware.

The signal intensity for each probe on each chip was calculated

from scanned images using GeneChip Operating Software

(Affymetrix), and signal intensities were analyzed using BioCon-

ductor (http://www.bioconductor.org). Probe intensities were

background corrected, normalized, and summarized using the

Robust Multichip Average method described by Speed and

coworkers [50,51]. An alternative normalization method based on

reference genes did not significantly change the results. The FDR

for differential expression between NLC and Tg-Kif1cD2 for each

individual gene was calculated using the method of Benjamini and

Hochberg [52]. Gene expression data were analyzed using a

threshold of FDR#0.05 to identify differentially expressed genes.

T cell stimulatory capacity of antigen presenting cells
(APCs)

NLC and Tg-Kif1cD2 mice were immunized at d0 and d7 s.c. in

the posterior right and left flank and the scruff of the neck with a

sonicated PBS/oil emulsion containing 20 mg of OVA, faction V

(Sigma-Aldrich, St. Louis, MO), or 100 mg of PLP180–199 in CFA

supplemented with 200 mg of Mycobacterium tuberculosis H37Ra.

Spleens and LN were harvested on d10. APCs from erythrocyte-

free spleens were obtained by anti-CD4/anti-CD8 complement
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depletion and treated with mitomycin C (25 mg/ml; Sigma-

Aldrich). Responder CD4 T cells from LN and spleens were

isolated by negative selection as previously described [48]. Single

cell suspensions of OVA- or PLP180–199-APCs (26105 cells/well)

and Ag-specific responder CD4 T cell (16105 cells/well)

suspensions were prepared in RPMI 1640 (5% FBS), and plated

on standard 96-well U-bottom tissue culture plates. Cells were

stimulated with 1, 10, and 25 mg/ml of OVA or 2.5, 10, and

50 mg/ml of PLP180–199 for 72 h at 37uC. During the last 18 h of

culture, 1 mCi of [3H] thymidine (PerkinElmer, Santa Clara, CA)

was added. Cells were harvested onto glass fiber filters and

thymidine uptake was determined with a liquid scintillation

counter.

Preparation of Jurkat cells, transfection, stimulation, and
luciferase assays

Jurkat cells were cultured in RPMI containing 10% FBS

without stimulation for 24 hours at a concentration of 16106

cells/ml. Plasmids encoding Kif1cD2, Kif1cCByJ alleles, LPY-KIF1c

and PSY-KIF1c mutants, corresponding empty vector (pcDNA,

Invitrogen, Carlsbad, CA), Il2 promoter (2575 to +57 base pairs)

luciferase reporter, and control pGL2 luciferase reporter (Pro-

mega, Madison, WI) were used for transfection. Five micrograms

of each plasmid were used for the transfection of approximately

56106 Jurkat cells by electroporation at 250 mV and 900 mF in

250 ml of RPMI with a BioRad electroporator (BioRad, Hercules,

CA). Cells were subsequently cultured in RPMI and 10% FBS for

24 hours and then stimulated with PMA (10 ng/ml) and calcium

ionophore calcimycin (0.5 mg/ml) for 3 hours. Cell lysates were

prepared and supernatants collected to quantified luciferase

activity (Promega, Madison, WI). The luminescence was measured

immediately using a luminometer (Sunnyvale, CA). The transfec-

tion efficiency was compared between the samples by co-

transfecting a plasmid encoding b-galactosidase. The luciferase

activity was normalized using the b-galactosidase value.

Mutagenesis
Point mutations were introduced in the plasmid encoding the

Kif1c allele from the D2 mouse using the QuikChange Site-

Directed mutagenesis kit (Stratagene, USA). Briefly the plasmid

was denatured and then annealed with the appropriate mutagenic

primer that contained the desired mutation. Using Pfu DNA

polymerase, new mutagenized strands were created. The parental

DNA template was digested with DpnI and the new mutated

plasmid was used to transform E. coli. The plasmid DNA was

extracted using the Qiagen Maxi-Prep kit (Qiagen, Valencia, CA).

The primers used for mutagenesis of the nucleotide at position

1033 (amino acid 578) of the D2 allele were: forward: 59-

GCTCGTGACGGAGCTGCTGGTGCTGAAGTC-39; reverse:

59-GACTTCAGCACCAGCAGCTCCGTCACGAGC- 39; and

for the nucleotide at position 3079 (amino acid 1027):

Forward: 59CGAAGACCCCACCGTTCTCGCAGGAATT-

CCC-39, and

Reverse: 59GGGAATTCCTGCGAGAACGGTGGGGTCT-

TCG-39.

Supporting Information

Figure S1 Genealogy of the congenic and interval specific

congenic lines used in this study. Third backcross generation

(BALB/cAnPt6DBA/2NCr)6BALB/cAnPt mice heterozygous at

Evi2 or at Hba and Es3 were selected and backcrossed for six

generations to BALB/cAnPt mice. Homozygous lines C.D2-Evi2

and C.D2-Hba/Es3 were fixed by brother-sister mating. Overlap-

ping interval specific recombinant congenic (ISRC) lines were

generated by crossing C.D2-Evi2 mice to CByJ mice. F2 hybrids

were genotyped using tail snip DNA and PCR with Chr11

microsatellite markers discriminating CByJ and D2 mice across

the Orch3 candidate interval [10]. Founders were analyzed for

background contamination and mice carrying CByJ alleles at all

background marker loci were backcrossed an additional two

generations to CByJ mice. Homozygous C.D2-3, C.D2-5, C.D2-8,

and C.D2-9 ISRC lines were fixed by brother-sister mating.

Similarly, higher order resolution mapping panels of ISRC lines

were generated by screening (C.D2-36CByJ)6CByJ, (C.D2-

86CByJ)6CByJ and (C.D2-3.26CByJ)6CByJ backcross mice for

recombinants.

(PDF)

Figure S2 Genotypes of congenic and interval specific congenic

lines used in this study. Microsatellite and SNP based genotyping

was done using tail snip DNA and PCR [10]. aLocations are as

given on either Ensembl or MGI. bHba alleles were determined by

isoelectric focusing as described in [53]. cDie marker and deletion

mutation locations are as described in [54]. dEvi2 and Es3 alleles

were determined as described in [55].

(PDF)

Figure S3 Illustration of the potential effect of altered MHC

Class II expression on T helper (TH) cell differentiation. (Figure

generated using Ingenuity Pathway Analysis, Ingenuity Systems.

Green = expression decreased in Tg-Kif1cD2 relative to NLC).

(PDF)

Table S1 Genes differentially expressed between NLC and Tg-

Kif1cD2 CD11b+ cells. TCRb2IA/IE+CD11c2CD11b+ myeloid

cells were harvested from naı̈ve NLC and Tg-Kif1cD2 mice and

differential gene expression was detected using Affymetrix

GeneChip Mouse Genome 430A 2.0 Arrays. 1Chr = chromosome.
2logFC = log2 signed fold change.

(PDF)

Table S2 Transgenic expression of Kif1cD2 on CD11b+ cells

influences pathways involving MHC Class II (genes in bold).

TCRb2IA/IE+CD11c2CD11b+ myeloid cells were harvested

from naı̈ve NLC and Tg-Kif1cD2 mice and differential gene

expression was detected using Affymetrix GeneChip Mouse

Genome 430A 2.0 Arrays. 1Pathway analysis was conducted

using Ingenuity Pathway Analysis software (Ingenuity Systems,

www.ingenuity.com). To ensure biological relevance, cell type was

restricted to B-cells, dendritic cells, and macrophages.

(PDF)

Acknowledgments

We thank Dr. Christopher L. Berger for helpful discussion and Kevin

Laddison for the excellent technical support provided; Dr. Mercedes

Rincon and John T. Dodge at the UVM Transgenic/Knockout Mouse

Facility for assistance with the generation of Tg-Kif1cD2 mice; T. Hunter, S.

Tighe, Mary Lou Shane, and the staff at the UVM Advanced Genome

Technologies Core for assistance with microarray and qRT–PCR; and

Colette Charland for cell sorting.

Author Contributions

Conceived and designed the experiments: RdR RDM NDM GCT CT.

Performed the experiments: RdR RDM NDM VCK. Analyzed the data:

RdR EHW JPB KSKT VCK GCT CT. Wrote the paper: RdR EHW CT.

Orch3/Kif1c Controls EAO Resistance

PLOS Genetics | www.plosgenetics.org 8 December 2012 | Volume 8 | Issue 12 | e1003140



References

1. Lustig L, Tung KSK (2006) The autoimmune diseases. Missouri: Elsevier-

Academic Press. 841–848 p.
2. Tung KSK, Fusi F, Teuscher C (2002) Autoimmune disease of the

speermatozoa, ovary and testis; USA: Routledge. 1031–1045 p.
3. Kohno S, Munoz JA, Williams TM, Teuscher C, Bernard CC, et al. (1983)

Immunopathology of murine experimental allergic orchitis. J Immunol 130:

2675–2682.
4. Tung KS, Teuscher C (1995) Mechanisms of autoimmune disease in the testis

and ovary. Hum Reprod Update 1: 35–50.
5. Yule TD, Tung KS (1993) Experimental autoimmune orchitis induced by testis

and sperm antigen-specific T cell clones: an important pathogenic cytokine is

tumor necrosis factor. Endocrinology 133: 1098–1107.
6. Jacobo P, Guazzone VA, Jarazo-Dietrich S, Theas MS, Lustig L (2009) Differential

changes in CD4+ and CD8+ effector and regulatory T lymphocyte subsets in the
testis of rats undergoing autoimmune orchitis. J Reprod Immunol 81: 44–54.

7. Jacobo P, Perez CV, Theas MS, Guazzone VA, Lustig L (2011) CD4+ and
CD8+ T cells producing Th1 and Th17 cytokines are involved in the

pathogenesis of autoimmune orchitis. Reproduction 141: 249–258.

8. Teuscher C, Blankenhorn EP, Hickey WF (1987) Differential susceptibility to
actively induced experimental allergic encephalomyelitis and experimental

allergic orchitis among BALB/c substrains. Cell Immunol 110: 294–304.
9. Teuscher C, Smith SM, Goldberg EH, Shearer GM, Tung KS (1985)

Experimental allergic orchitis in mice. I. Genetic control of susceptibility and

resistance to induction of autoimmune orchitis. Immunogenetics 22: 323–333.
10. Meeker ND, Hickey WF, Korngold R, Hansen WK, Sudweeks JD, et al. (1995)

Multiple loci govern the bone marrow-derived immunoregulatory mechanism
controlling dominant resistance to autoimmune orchitis. Proc Natl Acad Sci U S A

92: 5684–5688.
11. Razavi R, Chan Y, Afifiyan FN, Liu XJ, Wan X, et al. (2006) TRPV1+ sensory

neurons control beta cell stress and islet inflammation in autoimmune diabetes.

Cell 127: 1123–1135.
12. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage

function. Annu Rev Immunol 15: 323–350.
13. Nagy G, Koncz A, Telarico T, Fernandez D, Ersek B, et al. (2010) Central role

of nitric oxide in the pathogenesis of rheumatoid arthritis and systemic lupus

erythematosus. Arthritis Res Ther 12: 210.
14. Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage

susceptibility to anthrax lethal toxin. Nat Genet 38: 240–244.
15. Kopp P, Lammers R, Aepfelbacher M, Woehlke G, Rudel T, et al. (2006) The

kinesin KIF1C and microtubule plus ends regulate podosome dynamics in
macrophages. Mol Biol Cell 17: 2811–2823.

16. Wubbolts R, Fernandez-Borja M, Jordens I, Reits E, Dusseljee S, et al. (1999)

Opposing motor activities of dynein and kinesin determine retention and transport
of MHC class II-containing compartments. J Cell Sci 112 (Pt 6): 785–795.

17. Watters JW, Dewar K, Lehoczky J, Boyartchuk V, Dietrich WF (2001) Kif1C, a
kinesin-like motor protein, mediates mouse macrophage resistance to anthrax

lethal factor. Curr Biol 11: 1503–1511.

18. Dorner C, Ciossek T, Muller S, Moller PH, Ullrich A, et al. (1998)
Characterization of KIF1C, a new kinesin-like protein involved in vesicle

transport from the Golgi apparatus to the endoplasmic reticulum. J Biol Chem
273: 20267–20275.

19. Kirchner J, Seiler S, Fuchs S, Schliwa M (1999) Functional anatomy of the
kinesin molecule in vivo. Embo J 18: 4404–4413.

20. Schlager MA, Kapitein LC, Grigoriev I, Burzynski GM, Wulf PS, et al. (2010)

Pericentrosomal targeting of Rab6 secretory vesicles by Bicaudal-D-related
protein 1 (BICDR-1) regulates neuritogenesis. Embo J 29: 1637–1651.

21. Macho B, Brancorsini S, Fimia GM, Setou M, Hirokawa N, et al. (2002)
CREM-dependent transcription in male germ cells controlled by a kinesin.

Science 298: 2388–2390.

22. Chennathukuzhi V, Morales CR, El-Alfy M, Hecht NB (2003) The kinesin
KIF17b and RNA-binding protein TB-RBP transport specific cAMP-responsive

element modulator-regulated mRNAs in male germ cells. Proc Natl Acad
Sci U S A 100: 15566–15571.

23. Hedrich CM, Rauen T, Tsokos GC (2011) cAMP-responsive element modulator

(CREM)alpha protein signaling mediates epigenetic remodeling of the human
interleukin-2 gene: implications in systemic lupus erythematosus. J Biol Chem

286: 43429–43436.
24. Snoek M, Jansen M, Olavesen MG, Campbell RD, Teuscher C, et al. (1993)

Three Hsp70 genes are located in the C4-H-2D region: possible candidates for
the Orch-1 locus. Genomics 15: 350–356.

25. Teuscher C, Gasser DL, Woodward SR, Hickey WF (1990) Experimental

allergic orchitis in mice. VI. Recombinations within the H-2S/H-2D interval
define the map position of the H-2-associated locus controlling disease

susceptibility. Immunogenetics 32: 337–344.
26. Butterfield RJ, Sudweeks JD, Blankenhorn EP, Korngold R, Marini JC, et al.

(1998) New genetic loci that control susceptibility and symptoms of experimental

allergic encephalomyelitis in inbred mice. J Immunol 161: 1860–1867.
27. Butterfield RJ, Blankenhorn EP, Roper RJ, Zachary JF, Doerge RW, et al.

(2000) Identification of genetic loci controlling the characteristics and severity of
brain and spinal cord lesions in experimental allergic encephalomyelitis.

Am J Pathol 157: 637–645.

28. Teuscher C, Hickey WF, Grafer CM, Tung KS (1998) A common

immunoregulatory locus controls susceptibility to actively induced experimental
allergic encephalomyelitis and experimental allergic orchitis in BALB/c mice.

J Immunol 160: 2751–2756.
29. Shaw MH, Boyartchuk V, Wong S, Karaghiosoff M, Ragimbeau J, et al. (2003)

A natural mutation in the Tyk2 pseudokinase domain underlies altered

susceptibility of B10.Q/J mice to infection and autoimmunity. Proc Natl Acad
Sci U S A 100: 11594–11599.

30. Spach KM, Noubade R, McElvany B, Hickey WF, Blankenhorn EP, et al.
(2009) A single nucleotide polymorphism in Tyk2 controls susceptibility to

experimental allergic encephalomyelitis. J Immunol 182: 7776–7783.

31. Wandstrat A, Wakeland E (2001) The genetics of complex autoimmune diseases:
non-MHC susceptibility genes. Nat Immunol 2: 802–809.

32. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators
of the immune system. Nat Rev Immunol 9: 162–174.

33. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, et al. (2010)
Development of monocytes, macrophages, and dendritic cells. Science 327: 656–

661.

34. Fu W, Wojtkiewicz G, Weissleder R, Benoist C, Mathis D (2012) Early window
of diabetes determinism in NOD mice, dependent on the complement receptor

CRIg, identified by noninvasive imaging. Nat Immunol 13: 361–368.
35. Moline-Velazquez V, Cuervo H, Vila-Del Sol V, Ortega MC, Clemente D, et

al. (2011) Myeloid-derived suppressor cells limit the inflammation by promoting

T lymphocyte apoptosis in the spinal cord of a murine model of multiple
sclerosis. Brain Pathol 21: 678–691.

36. Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD, et al. (2007)
Type II monocytes modulate T cell-mediated central nervous system

autoimmune disease. Nat Med 13: 935–943.
37. Richer MJ, Lavallee DJ, Shanina I, Horwitz MS (2012) Immunomodulation of

antigen presenting cells promotes natural regulatory T cells that prevent

autoimmune diabetes in NOD mice. PLoS ONE 7: e31153. doi:10.1371/
journal.pone.0031153.

38. Bernasconi P, Cappelletti C, Navone F, Nessi V, Baggi F, et al. (2008) The
kinesin superfamily motor protein KIF4 is associated with immune cell

activation in idiopathic inflammatory myopathies. J Neuropathol Exp Neurol

67: 624–632.
39. Stagi M, Gorlovoy P, Larionov S, Takahashi K, Neumann H (2006) Unloading

kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-
terminal kinase pathway. Faseb J 20: 2573–2575.

40. McCauley JL, Zuvich RL, Beecham AL, De Jager PL, Konidari I, et al. (2010)
Comprehensive follow-up of the first genome-wide association study of multiple

sclerosis identifies KIF21B and TMEM39A as susceptibility loci. Hum Mol

Genet 19: 953–962.
41. Alcina A, Vandenbroeck K, Otaegui D, Saiz A, Gonzalez JR, et al. (2010) The

autoimmune disease-associated KIF5A, CD226 and SH2B3 gene variants confer
susceptibility for multiple sclerosis. Genes Immun 11: 439–445.

42. Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor

proteins and intracellular transport. Nat Rev Mol Cell Biol 10: 682–696.
43. Nakagawa T, Tanaka Y, Matsuoka E, Kondo S, Okada Y, et al. (1997)

Identification and classification of 16 new kinesin superfamily (KIF) proteins in
mouse genome. Proc Natl Acad Sci U S A 94: 9654–9659.

44. Nakajima K, Takei Y, Tanaka Y, Nakagawa T, Nakata T, et al. (2002)
Molecular motor KIF1C is not essential for mouse survival and motor-

dependent retrograde Golgi apparatus-to-endoplasmic reticulum transport. Mol

Cell Biol 22: 866–873.
45. McAllister RD, Singh Y, du Bois WD, Potter M, Boehm T, et al. (2003)

Susceptibility to anthrax lethal toxin is controlled by three linked quantitative
trait loci. Am J Pathol 163: 1735–1741.

46. Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, et al. (2006)

Onset and progression in inherited ALS determined by motor neurons and
microglia. Science 312: 1389–1392.

47. Wildin RS, Garvin AM, Pawar S, Lewis DB, Abraham KM, et al. (1991)
Developmental regulation of lck gene expression in T lymphocytes. J Exp Med

173: 383–393.

48. Noubade R, Milligan G, Zachary JF, Blankenhorn EP, del Rio R, et al. (2007)
Histamine receptor H1 is required for TCR-mediated p38 MAPK activation

and optimal IFN-gamma production in mice. J Clin Invest 117: 3507–3518.
49. Affymetrix (2005–2006) GeneChip Expression Analysis Technical Manual.

50. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of
normalization methods for high density oligonucleotide array data based on

variance and bias. Bioinformatics 19: 185–193.

51. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, et al. (2003) Summaries
of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15.

52. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false
discovery rate in behavior genetics research. Behav Brain Res 125: 279–284.

53. Popp RA, Bailiff EG, Skow LC, Whitney JB, 3rd (1982) The primary structure

of genetic variants of mouse hemoglobin. Biochem Genet 20: 199–208.
54. Watters JW, Dietrich WF (2001) Genetic, physical, and transcript map of the

Ltxs1 region of mouse chromosome 11. Genomics 73: 223–231.
55. Roderick TH, Hutton JJ, Ruddle FH (1970) Linkage of esterase-3 and rex on

linkage group VII of the mouse. J Hered 61: 278–279.

Orch3/Kif1c Controls EAO Resistance

PLOS Genetics | www.plosgenetics.org 9 December 2012 | Volume 8 | Issue 12 | e1003140


