667 research outputs found

    Hybrid normal metal/ferromagnetic nanojunctions for domain wall tracking

    Get PDF
    Hybrid normal metal/ferromagnetic, gold/permalloy (Au/Py), nanojunctions are used to investigate magnetoresistance effects and track magnetization spatial distribution in L-shaped Py nanostructures. Transversal and longitudinal resistances are measured and compared for both straight and 90° corner sections of the Py nanostructure. Our results demonstrate that the absolute change in resistance is larger in the case of longitudinal measurements. However, due to the small background resistance, the relative change in the transversal resistance along the straight section is several orders of magnitude larger than the analogous longitudinal variation. These results prove that hybrid nanojunctions represent a significant improvement with respect to previously studied all-ferromagnetic crosses, as they also reduce the pinning potential at the junction and allow probing the magnetization locally. In addition, unusual metastable states with longitudinal domain walls along Py straight sections are observed. Micromagnetic simulations in combination with a magnetotransport model allow interpretation of the results and identification of the observed transitions

    Plug-and-Play SLAM: A Unified SLAM Architecture for Modularity and Ease of Use

    Get PDF
    Nowadays, SLAM (Simultaneous Localization and Mapping) is considered by the Robotics community to be a mature field. Currently, there are many open-source systems that are able to deliver fast and accurate estimation in typical real-world scenarios. Still, all these systems often provide an ad-hoc implementation that entailed to predefined sensor configurations. In this work, we tackle this issue, proposing a novel SLAM architecture specifically designed to address heterogeneous sensors' configuration and to standardize SLAM solutions. Thanks to its modularity and to specific design patterns, the presented architecture is easy to extend, enhancing code reuse and efficiency. Finally, adopting our solution, we conducted comparative experiments for a variety of sensor configurations, showing competitive results that confirm state-of-the-art performance

    Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy

    Get PDF
    open8sìHybrid ferromagnetic(Py)/non-magnetic metal(Au) junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM) with a magnetic bead (MB) attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ∼1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.openCorte-León, H.; Krzysteczko, P.; Marchi, F.; Motte, J.-F.; Manzin, A.; Schumacher, H. W.; Antonov, V.; Kazakova, O.Corte León, H.; Krzysteczko, P.; Marchi, F.; Motte, J. F.; Manzin, Alessandra; Schumacher, H. W.; Antonov, V.; Kazakova, O

    Porous structure of thick fiber webs

    Get PDF
    The bulk properties and stochastic pore geometry of finite-thickness fiber webs are studied using a realistic model for the sedimentation of flexible fibers [K. J. Niskanen and M. J. Alava, Phys. Rev. Lett. 73, 3475 (1994)]. The resulting web structure is controlled by a dimensionless number F=Tfwf/tf, where Tf is fiber flexibility, wf fiber width, and tf fiber thickness. The fiber length (≫wf,tf) is irrelevant. With increasing coverage c̄, a crossover occurs at c̄=c0≈1+2F from a vacancy-controlled two-dimensional (2D) structure to a pore-controlled 3D structure. The 3D structures are isomorphic in that the pore dimensions are exponentially distributed, with the decay rate dependent only on F.Peer reviewe
    corecore