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The bulk properties and stochastic pore geometry of finite-thickness fiber webs are studied using a
realistic model for the sedimentation of flexible fibers@K. J. Niskanen and M. J. Alava, Phys. Rev.
Lett. 73, 3475 ~1994!#. The resulting web structure is controlled by a dimensionless number
F5Tfwf /t f , whereTf is fiber flexibility, wf fiber width, andt f fiber thickness. The fiber length
(@wf ,t f) is irrelevant. With increasing coveragec̄, a crossover occurs atc̄5c0'112F from a
vacancy-controlled two-dimensional~2D! structure to a pore-controlled 3D structure. The 3D
structures are isomorphic in that the pore dimensions are exponentially distributed, with the decay
rate dependent only onF. © 1997 American Institute of Physics.@S0021-8979~97!04809-3#

I. INTRODUCTION

The mechanical and transport properties of disordered
materials depend on their geometry. The simplest systems
are two-phase materials, e.g. porous metals and particle ag-
gregates that consist of a solid phase and aporephase. Such
structures are dual in that properties such as conductivity and
elastic modulus depend on the solid phase1–4 while others
such as permeability depend on the pore phase. Linear be-
havior with the pore volume fraction is expected in, e.g.,
resistivity at low porosity and in permeability at high poros-
ity. Nonlinear phenomena should take place close to the per-
colation threshold of the governing phase-pores in fluid flow
and solid phase in transport problems.

The connection between the dynamical properties and
the structure is difficult to establish because higher-order sta-
tistics of the medium geometry are needed.5 In analytical
calculations one has to resort to approximations such as
variational bounds using second and third order correlation
functions,6 effective medium techniques applied at the ‘‘best
length scale’’7–10 and percolation-type ideas.11,12 As an ex-
ample, consider permeability. If the pore system is well-
connected then the capillary approximation should hold.
Thus the permeability depends only on the effective hydrau-
lic radius of a typical pore and the contact angle of the fluid
phase.13,14 However, the capillary approximation is not use-
ful if the pore system consists of large cavities that are con-
nected through narrow pore throats. It may then be useful to
relate the distribution of the throats to the percolation thresh-
old in connectivity.11,12,15

Analytical calculations for dynamic properties can be
tested using numerically simulated model structures. In real
world disordered solids can be formed through deposition or
sedimentation of solid particles from a suspension but little is
known about the structure of such systems16 since it depends
on particle interactions in the suspension and during the set-
tling process.17 We have recently introduced a computation-
ally effective model for the geometry of sedimented random

fiber networks.18 In the model suspension flow and particle
interactions are ignored. The fibers settle down one by one
and do not deform the already formed underlying structure.
The three-dimensional geometry is governed by the flexibil-
ity and dimensions of the fibers.

The simulation model produces realistic porous struc-
tures that closely resemble manmade fibrous webs such as
paper and nonwovens. Indeed, paper has been used as a
model random material in imbibition experiments in the sta-
tistical physics communitity to study invasion percolation
and kinetic roughening.19 The model can also be extended to
other sedimentation processes with different particle shapes.
All structures formed through sedimentation from a dilute
suspension of non-interacting particles are governed by Pois-
son statistics. Our model captures their essential features.

In this article, we have applied the model to the geo-
metrical properties of ‘‘thick’’ planar random fiber webs. In
addition to macroscopic quantities such as the average po-
rosity and coordination number, we characterize the pore
population in the vertical and planar directions of the web.
The results are summarized with empirical formulas and
compared with the Poissonian statistics. The rest of this pa-
per is organized as follows. The simulation model is intro-
duced in Sec. II. Bulk properties are discussed in Sec. III and
pore statistics in Sec. IV. Permeability of the web is briefly
discussed in Sec. V and conclusions are presented in Sec. VI.

II. THE DEPOSITION MODEL

We start with a two-dimensional square lattice substrate,
of dimensionL510...1000.L is important only for non-
trivial scaling quantities as the surface roughness and perco-
lation threshold, which involve correlations parallel to the
substrate. Such properties are not considered here. We con-
centrate on long (l f@1) straight fibers of widthwf51 equal
to the lattice constant. Fiber thicknesst f is arbitrary in our
study.20 Fibers are positioned at random in the two lattice
directions so that local coveragec ~number of fibers covering
any cell! is an integer. Periodic boundary conditions are ap-
plied to fibers that cross the boundaries.18

a!Also at: Department of Physics and Astronomy, Michigan State Univer-
sity, East Lansing, MI 48824-1116; Electronic mail: mja@fyslab.hut.fi
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Porous structures arise when the fibers have a nonzero
stiffness. A bending flexibilityTf of the fibers is defined
through a constraint on the height of ‘‘steps’’ that the fibers
can form:

uzi2zj u<Tf , ~1!

wherezi andzj are the elevations of the top surface of the
fiber above any two nearest neighbor cellsi and j covered by
the fiber. Every new fiber is pressed down as low as possible
without deforming the underlying web and while still obey-
ing Eq. ~1!.

The spatial discretization should have no effect on the
web properties except whenTf is an integer multiple of fiber
thickness. The resulting irregularities will be pointed out be-
low. They could be avoided by assigning a range of incom-
mensurate values to, e.g., fiber flexibility. One can demon-
strate that at fiber lengthsl f@wf the structure becomes
independent ofl f . It is then easy to accept that the web
structure should depend only on a dimensionless flexibility
number18

F5Tfwf /t f . ~2!

We have checked through simulations that this is the case.21

Our data indicates thatl f /wf.20 is sufficient to reach the
F-controlled regime. Of course, the thickness and pore
heights of the web are proportional tot f .

Given that onlyF matters, all the simulations reported
below have been made withwf5t f51. A high F leads to a
dense web and a lowF to a porous one. To connect with the
real world the so-called wet fiber flexibility22 (WFF) of
paper-making fibers can be related toTf through
Tf5@C3wf3WFF#1/4, whereC depends on the pressure
and other experimental details. Measured values ofWFF23

and known dimensions of paper-making fibers yield
F50.5...3.

Our model is similar to many growth models and par-
ticularly to the Vold model.24,25 At the same time it ignores
many real sedimentation phenomena such as clustering or
flocculation of the fibers and reordering along the surface
because of hydrodynamic or gravitational forces.17 The local
interactions are replaced by an average force accounted for
by F. The simple bending rule, Eq.~1!, does not even de-
scribe accurately hydrostatic compression.26 Despite all these
simplifications the model seems powerful in producing real-
istic structures.

III. BULK PROPERTIES: DENSITY AND
CONNECTIVITY

The bulk properties of fiber webs can be characterized
by four numbers, coveragec̄, densityr, coordination number
n̄ and pore numberp̄. Coveragec̄ is the average number of
fibers at any point. In most of our simulationsc̄550–100.
Densityr<1 is the volume fraction occupied by the fibers;
hencer is equivalent to solid fractionf in porosity language.
The volume of the web is bounded by the rough surfaces.
The web thickness is the average of local thicknesses. Ap-
parent thicknesses that one would measure in practice give a
lower bound forr. Coordination numbern̄ specifies the con-
nectivity of the web. We definen̄<1 as the average contact

area, divided by the total area, 2l fwf , of a fiber.
27 Pore num-

ber p̄ is the average number of pores per cell area.
Consider first the special caseF5` when the fibers

have infinite flexibility or zero thickness. The web is then
two-dimensional. The only ‘‘pores’’ are vacancies, cells cov-
ered with no fibers. Poisson statistics implies that their num-
ber isv̄ 5 exp(2 c̄) and the coordination number is given by28

n̄512@12exp~2 c̄!#/ c̄. ~3!

Hencen̄ increases with coverage.
With finite flexibility and nonzero thickness, pores de-

velop when coverage increases. It is easy to see that

n̄512
p̄11

c̄
@12exp~2 c̄!# ~4!

follows as a generalization of Eq.~3!. The coordination num-
ber n̄ still increases withc̄, but only at lowc̄ ~cf. Fig. 1!. At
higher coveragesn̄ has a weak maximum, and then becomes
constant,n̄→n` . In the following we use the subscript̀for
the asymptotic high coverage region. This happens because
the roughness of the top surface increases so that at some
point the new fibers are no longer able to conform with the
deepest valleys. Thereafterp̄ increases and counteracts the
decrease inv̄.

Whereasn̄ has a maximum with increasing coverage, the
web densityr goes down monotonically~Fig. 2!. There is no
simple relationship betweenn̄ andr at fixedF when c̄ var-
ies, butn̄ andr are almost linearly related whenF varies at
fixed c̄.18

In the asympotic high-coverage region the flat substrate
no longer has any effect onn̄, and every new ‘‘layer’’ of
fibers has the same structure as the preceding one. This is the
region of three dimensional bulk structure. Hence the pore
number increases linearly with coverage

p̄5p8̀ ~ c̄2c0!. ~5!

The coveragec0 measures the crossover from a two-
dimensional system to the growth of a three-dimensional

FIG. 1. Coordination numbern̄ against coveragec̄; the solid line gives Eq.
~4!. F51 (1) and 2~L!, fiber lengthl f521. The inset shows an enlarge-
ment of theF51 case. Two system sizes,L51000 and 100~the latter at
high coverages!, give slightly different results aroundc̄510.

6426 J. Appl. Phys., Vol. 81, No. 9, 1 May 1997 Hellén, Alava, and Niskanen
 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

130.233.216.27 On: Wed, 02 Dec 2015 08:16:02



bulk phase. The discrete model geometry causes oscillations
in c0 againstF ~Fig. 3!. If they are smeared out,c0 is
roughly given by

c0'112F. ~6!

On the average no pores exist atc̄ , 1, thusc0 > 1. The simu-
lation data forp8̀ 512n` , the slope ofp̄ relative to cover-
age, is well represented by anad hocexpression

p8̀ 512n`.
12exp~22F !

2F
, ~7!

similar to Eq. ~3! at the 2D limit @Fig. 4~a!#. Figure 4~b!
compares the asymptotic densityr` : it is slightly smaller
than the coordination number,n`'1.2r` .

IV. PORE STATISTICS

We show next how the pore system of our model
changes when fiber flexibility is changed. Pores are defined
as vertical openings between fibers. Cavities, i.e., cells of
zero local coverage are extremely rare at the high coverages
considered and are excluded from the following analysis

even if they occurred. Nor is the open space between the web
and the substrate considered. The pore network is different in
the thickness~or z direction! and xy plane since fibers are
long compared to web thickness. The two directions are
therefore treated separately.

A. Pore ‘‘heights’’

Figure 5 illustrates the porous model geometry in the
thickness direction. The distribution of pore heights is deter-
mined by counting the height of all vertical openings above
every cell. This definition, instead of an average height of a
pore, avoids all ambiquities regarding what a single pore is.

Figure 6~a! shows two examples of the pore height dis-
tributionG(h) at c̄583@c0 . Possible pore height values are
determined byF; the values used here,F50.2 and 1.2, mean
that all pore heights must be multiples of 0.2t f . At that

FIG. 2. Densityr against coveragec̄. F51 (1) and 2~L!, fiber length
l f521. Two system sizes,L51000 and 100~the latter at high coverages!.

FIG. 3. The 2D-to-3D crossover coveragec0 against fiber flexibilityF. The
solid line isc05112F.

FIG. 4. The asymptotic coordination number,n` @~a!, l.h.s.#, the coverage
gradient of the pore number,p8̀ @~a!, r.h.s.#, and the asymptotic density
r` ~b! against fiber flexibilityF. The solid lines give the expression (1
2e22F)/2F.

FIG. 5. An example of the cross-section of the fiber web atc̄583. The
section is 500 cells wide. Fibers are black and pores white.
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resolutionG(h) oscillates slightly with a cycle oft f . The
oscillations are artefacts of the discrete model. The exponen-
tial nature of the distribution function becomes more evident
when pore heights are rounded to integer values oft f ,
G→(k524

0 G(h 1 0.2ktf), with integerh/t f @Fig. 6~b!#. The
exponential approximation underestimates somewhat the fre-
quency of flat pores@Fig. 6~c!#. If the distribution were pre-
cisely exponential,

G~h!5h0
21 exp~2h/h0!, ~8!

then the average pore heighth̄ should be equal toh0 .
The actual values ofh̄ are systematically larger thanh0 ~Fig.
7!. In the limit c̄→` we expect thath̄ ' t f /r` as the
web density r` is related to h̄ through
r`

215( c̄1 p̄h̄)/ c̄'h̄(12r`)11. However, the simulation
results~at c̄ 5 83! do not agree with this. Instead a good

approximation ish̄'1.5t f /n` . The discrepancy is caused by
the fact thatn`>r` ~cf. Fig. 4!. A similar but not quite as
good an approximation applies toh0 : h0't f /n` ~Fig. 7!.

B. Pore ‘‘areas’’

Pore areas are determined fromxy cross sections within
the web~see Fig. 8! for illustration. The pores form a com-
plicated inter-connected system where pores cannot be
uniquely defined.

We have considered,29 three different methods to deter-
mine the pore area distributionP(A). In the first one we
calculate the fractional area of narrow throats, or constric-
tions. The throats are those parts of the pore system through
which squares of a given size cannot pass along thexy plane.
Starting from a single cell we use larger and larger test
squares. At each square size we remove the corresponding
throats and evaluate the remaining pore area. In the end we
have the distribution of total pore area that isxy permeable
to squares of a given size. This method gives an upper bound
for P(A).

In the second penetration method we determine the larg-
est test square that can go through thexy cross section as
well as the total area where this happens. This area is then
blocked and the next, smaller test square is used to determine
how much of the remaining area that is permeable to them.
The method resembles experiments where increasing pres-
sure is used to force a test fluid into ever smaller pores.

FIG. 6. The distribution of pore heightsG(h) for F50.2 (1) and 1.2~L!.
Pore heighth is given in the units oft f . In ~a! all the possible values of
h, that is multiples of 0.2t f , are included while in~b! Sk524

0 G(h
1 0.2ktf) is plotted for integerh. Coveragec̄ 5 83. ~c! shows~a! in more
detail.

FIG. 7. The inverse values of the average pore height, 1/h̄ ~j!, and the
decay constant, 1/h0 @h, see Eq.~8!#, against fiber flexibilityF. Pore
heights are in the units oft f . The solid line is equal ton` and the dashed
line to 2n`/3.

FIG. 8. xy cross sections of 1003100 cells in the middle of a web with
c̄583 for fiber flexibility F50.2, 0.3 and 0.6~from left to right, respec-
tively!. Fibers are black and pores white. Fiber widthwf53.5 cells.
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However, the correspondence is not precise as measurements
always probe the three dimensions simultaneously.

The third method is equivalent to the second one except
that we start with one cell as the test square and proceed to
larger squares. At each step we move the test square row by
row through all the cells. Every time the test square fits into
a pore the corresponding cells are blocked. The test cell is
then moved forward until it meets the next large enough
opening. In this way all pores are covered by at most one test
square. The method gives a lower bound forP(A).

Even though the three methods differ in principle, they
all give quite similar results. Figure 9 shows the distribution
of pore areasP(A), as given by the minimum cross section
method~the third method above!. The distribution is again
close to exponential,P(A);exp(2A/A0), with A0;1/F. The
average pore areaĀ is somewhat different and given by
Ā'1/n` for wf51 ~Fig. 10!. The distribution function
P(A) has only a few values becauseA is of the formn2.

One might expect that pores with a large areaA would
also be high, but in fact the correlation between pore areas
and heights is weak. In Fig. 11 the characteristic height
h̃(A) is the average height of pores that are permeable~in
thez-direction! to test squares of areaA ~the second method
above!. The fiber flexibility F has no qualitative effect on
h̃(A). At large A there is a sharp cut-off above whichh̃

drops to zero; this may be caused by the use of squares as
probes. The cut-off area and height are related through
hcut;Acut

1/3 whenF is varied.
The above observations together with the exponential

distributions of pore heights and areas show that the 3D
structures are isomorphic. Since the pore height and cross-
sectional area are only weakly correlated, the average pore
volume V̄ can be estimated asV̄'h̄Ā'1.5/n`

2 since from
aboveĀ'1/n` and h̄'1.5/n` . Likewise the average sur-
face areaS̄ is given byS̄ ' 2Ā14h̄AĀ assuming the pores
are ‘‘ellipsoidal.’’ The number of pores per unit volume is
(2/3)n`

2 (12n`). Hence the surface area of pores per unit
volume of web, or specific surface area, is given bys̄
' (4An`14n`/3)(12n`) for c̄ @ 1. It has a maximum as a
function of F @Fig.12~a!#.

V. WEB PERMEABILITY

Our model is truly three-dimensional in the following
sense. The pores percolate in a 2D-cut parallel to the
xy-plane only for F!1.30 In cuts parallel to thexz- or
yz-plane pores never percolate but the permeability of the
3D web can still be nonzero. A thorough analysis of the
permeability is beyond the scope of this article, but a varia-
tional bound in thez-direction can be calculated.

The hydraulic conductancegh of an individual pore is
given by11,12

gh~A,h!5
A2

8phh
, ~9!

whereA is the pore area,h the pore height, andh the fluid
viscosity. This expression is used in a variational trial solu-
tion

gvar5g~A,h!~12r!@ f ~A,h!2 f c#
t, ~10!

wheref (A,h) 5 G(h)P(A) is the combined pore size distri-
bution ~assumingA and h independent! and f5 f c is the
percolation boundary in theA,h phase space. The percola-
tion exponentt may differ from the valuet 5 1.9 of 3D
isotropic systems11,31 since the pore structure is anisotropic.

The trial solution is minimized with respect to bothh
and A. The minimum with respect toh is given by

FIG. 9. The distribution of pore areasP(A) for F50.4 ~h!, 0.9 ~L!, 2.1
~1!, and 5.1~.!. Pore areas are of the formn2. Coveragec̄583.

FIG. 10. The inverse values of the average pore area, 1/Āh ~j!, and the
decay constant, 1/A0 ~h!, against fiber flexibilityF. The solid line is equal
to 1/n` . Pore areas are of the formn

2. Coveragec̄ 5 83.

FIG. 11. Characteristic average pore heighth̃ against pore areaA for
F50.1 ~h!, 0.4 ~L!, and 1 ~1! as given by the penetration algorithm.
Coveragec̄5 83.
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G(h)P(A)5 f c2th/h0 and therefore it is sensitive to the
values off c and t. However, we can proceed by looking at
how the hydraulic conductivity scales with the cross-
sectional distribution. We can then assumef c to be very
small—as is appropriate in many continuum problems. The
trial solution is minimized atA52A0 /t ' A0 if t51.9.Thus
the hydraulic conductivity should be proportional to
g;A0

2(12r) ; (12r)/F2. In the asymptotic high coverage
region this reduces to@cf. Eq. ~7!#

g;@12exp~22F !#/F3, ~11!

illustrated in Fig. 12~b!. The plot, particularly the maximum,
is interesting sinceg ands̄ can both be measured experimen-
tally.

VI. CONCLUSIONS

We have employed a simple numerical algorithm to
study the structure of sedimented fiber webs when coverage
and fiber flexibility vary. The effects of fiber flexibility are
described by the dimensionless parameterF. At low cover-
ages the system is effectively two-dimensional and its statis-
tical geometry is well understood.28 With increasing cover-
age, a three-dimensional bulk phase starts to grow above a
critical coveragec05112F. The 3D bulk phase in the
asymptotic high coverage region is isomorphic in structure,
qualitatively independent of the fiber properties. The distri-
butions characterizing pore sizes are roughly exponential

with the decay rate inversely proportional to the asymptotic
coordination numbern` . The coordination numbern̄ is in
turn a monotonically increasing function ofF. The fre-
quency and size of pores decrease whenF increases.

The square lattice geometry should suffice to describe,
e.g., mechanical properties and conductivity of fiber webs
that are related to the average coordination number. How-
ever, the pore size distributions considered above are limited
to length scales close to fiber width and thickness. In real
systems, such as paper, much smaller lengths are often rel-
evant. Small pores are controlled by fiber shape and internal
pores and perhaps by local surface tension and other forces
acting on and between the fibers. Such effects are not in-
cluded in our model. Thus the model would probably fail to
represent correctly the permeability of continuous systems.

Our model can be applied to study multicomponent sys-
tems. Technologically interesting are, e.g., grainlike objects
dispersed in a fiber web and~perhaps correlated! distribu-
tions of fiber length and flexibility.
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