84 research outputs found

    Modelling the Radiative Effects of Biomass Burning Aerosols on Carbon Fluxes in the Amazon Region

    Get PDF
    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry/biomass-burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of the global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that the biomass burning aerosols led to increases of about 27% of gross primary productivity of Amazonia, 10% of plant respiration and a decline in soil respiration of 3%. Consequently, in our model Amazonia, became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50% - 50% between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and Savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase of aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high biomass burning aerosol loads, changing from being a source to being a sink of CO2 to the atmosphere

    Evaluation of a field-deployable Nafion (TM)-based air-drying system for collecting whole air samples and its application to stable isotope measurements of CO2

    Get PDF
    Atmospheric flask samples are either collected at atmospheric pressure by opening a valve of a pre-evacuated flask or pressurized with the help of a pump to a few bar above ambient pressure. Under humid conditions, there is a risk that water vapor in the sample leads to condensation on the walls of the flask, notably at higher than ambient sampling pressures. Liquid water in sample flasks is known to affect the CO2 mixing ratios and also alters the isotopic composition of oxygen (17O and 18O) in CO2 via isotopic equilibration. Hence, for accurate determination of CO2 mole fractions and its stable isotopic composition, it is vital to dry the air samples to a sufficiently low dew point before they are pressurized in flasks to avoid condensation. Moreover, the drying system itself should not influence the mixing ratio and the isotopic composition of CO2 or that of the other constituents under study. For the Airborne Stable Isotopes of Carbon from the Amazon (ASICA) project focusing on accurate measurements of CO2 and its singly substituted stable isotopologues over the Amazon, an air-drying system capable of removing water vapor from air sampled at a dew point lower than -2 °C, flow rates up to 12 L min-1 and without the need for electrical power was needed. Since to date no commercial air-drying device that meets these requirements has been available, we designed and built our own consumable-free, power-free and portable drying system based on multitube Nafion™ gas sample driers (Perma Pure, Lakewood, USA). The required dry purge air is provided by feeding the exhaust flow of the flask sampling system through a dry molecular sieve (type 3A) cartridge. In this study we describe the systematic evaluation of our Nafion™-based air sample dryer with emphasis on its performance concerning the measurements of atmospheric CO2 mole fractions and the three singly substituted isotopologues of CO2 (16O13C16O, 16O12C17O and 16O12C18O), as well as the trace gas species CH4, CO, N2O and SF6. Experimental results simulating extreme tropical conditions (saturated air at 33 °C) indicated that the response of the air dryer is almost instantaneous and that approximately 85 L of air, containing up to 4 % water vapor, can be processed staying below a -2 °C dew point temperature (at 275 kPa). We estimated that at least eight flasks can be sampled (at an overpressure of 275 kPa) with a water vapor content below -2 °C dew point temperature during a typical flight sampling up to 5 km altitude over the Amazon, whereas the remaining samples would stay well below 5 °C dew point temperature (at 275 kPa). The performance of the air dryer on measurements of CO2, CH4, CO, N2O, and SF6 and the CO2 isotopologues 16O13C16O and 16O12C18O was tested in the laboratory simulating real sampling conditions by compressing humidified air from a calibrated cylinder, after being dried by the air dryer, into sample flasks. We found that the mole fraction and the isotopic composition difference between the different test conditions (including the dryer) and the base condition (dry air, without dryer) remained well within or very close to, in the case of N2O, the World Meteorological Organization recommended compatibility goals for independent measurement programs, proving that the test condition induced no significant bias on the sample measurements

    Amazonia as a carbon source linked to deforestation and climate change

    Get PDF
    Amazonia hosts the Earth's largest tropical forests and has been shown to be an important carbon sink over recent decades1-3. This carbon sink seems to be in decline, however, as a result of factors such as deforestation and climate change1-3. Here we investigate Amazonia's carbon budget and the main drivers responsible for its change into a carbon source. We performed 590 aircraft vertical profiling measurements of lower-tropospheric concentrations of carbon dioxide and carbon monoxide at four sites in Amazonia from 2010 to 20184. We find that total carbon emissions are greater in eastern Amazonia than in the western part, mostly as a result of spatial differences in carbon-monoxide-derived fire emissions. Southeastern Amazonia, in particular, acts as a net carbon source (total carbon flux minus fire emissions) to the atmosphere. Over the past 40 years, eastern Amazonia has been subjected to more deforestation, warming and moisture stress than the western part, especially during the dry season, with the southeast experiencing the strongest trends5-9. We explore the effect of climate change and deforestation trends on carbon emissions at our study sites, and find that the intensification of the dry season and an increase in deforestation seem to promote ecosystem stress, increase in fire occurrence, and higher carbon emissions in the eastern Amazon. This is in line with recent studies that indicate an increase in tree mortality and a reduction in photosynthesis as a result of climatic changes across Amazonia1,10.</p

    Amazonia as a carbon source linked to deforestation and climate change

    Get PDF
    Amazonia hosts the Earth’s largest tropical forests and has been shown to be an important carbon sink over recent decades1,2,3. This carbon sink seems to be in decline, however, as a result of factors such as deforestation and climate change1,2,3. Here we investigate Amazonia’s carbon budget and the main drivers responsible for its change into a carbon source. We performed 590 aircraft vertical profiling measurements of lower-tropospheric concentrations of carbon dioxide and carbon monoxide at four sites in Amazonia from 2010 to 20184. We find that total carbon emissions are greater in eastern Amazonia than in the western part, mostly as a result of spatial differences in carbon-monoxide-derived fire emissions. Southeastern Amazonia, in particular, acts as a net carbon source (total carbon flux minus fire emissions) to the atmosphere. Over the past 40 years, eastern Amazonia has been subjected to more deforestation, warming and moisture stress than the western part, especially during the dry season, with the southeast experiencing the strongest trends5,6,7,8,9. We explore the effect of climate change and deforestation trends on carbon emissions at our study sites, and find that the intensification of the dry season and an increase in deforestation seem to promote ecosystem stress, increase in fire occurrence, and higher carbon emissions in the eastern Amazon. This is in line with recent studies that indicate an increase in tree mortality and a reduction in photosynthesis as a result of climatic changes across Amazonia1,10

    CO2 emissions in the Amazon: are bottom-up estimates from land use and cover datasets consistent with top-down estimates based on atmospheric measurements?

    Get PDF
    Amazon forests are the largest forests in the tropics and play a fundamental role for regional and global ecosystem service provision. However, they are under threat primarily from deforestation. Amazonia's carbon balance trend reflects the condition of its forests. There are different approaches to estimate large-scale carbon balances, including top-down (e.g., CO2 atmospheric measurements combined with atmospheric transport information) and bottom-up (e.g., land use and cover change (LUCC) data based on remote sensing methods). It is important to understand their similarities and differences. Here we provide bottom-up LUCC estimates and determine to what extent they are consistent with recent top-down flux estimates during 2010 to 2018 for the Brazilian Amazon. We combine LUCC datasets resulting in annual LUCC maps from 2010 to 2018 with emissions and removals for each LUCC, and compare the resulting CO2 estimates with top-down estimates based on atmospheric measurements. We take into account forest carbon stock maps for estimating loss processes, and carbon uptake of regenerating and mature forests. In the bottom-up approach total CO2 emissions (2010 to 2018), deforestation and degradation are the largest contributing processes accounting for 58% (4.3 PgCO2) and 37% (2.7 PgCO2) respectively. Looking at the total carbon uptake, primary forests play a dominant role accounting for 79% (−5.9 PgCO2) and secondary forest growth for 17% (−1.2 PgCO2). Overall, according to our bottom-up estimates the Brazilian Amazon is a carbon sink until 2014 and a source from 2015 to 2018. In contrast according to the top-down approach the Brazilian Amazon is a source during the entire period. Both approaches estimate largest emissions in 2016. During the period where flux signs are the same (2015–2018) top-down estimates are approximately 3 times larger in 2015–2016 than bottom-up estimates while in 2017–2018 there is closer agreement. There is some agreement between the approaches–notably that the Brazilian Amazon has been a source during 2015–2018 however there are also disagreements. Generally, emissions estimated by the bottom-up approach tend to be lower. Understanding the differences will help improve both approaches and our understanding of the Amazon carbon cycle under human pressure and climate change

    Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4 : XCO2 retrievals, 2010–2014

    Get PDF
    We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble Kalman filter to simultaneously infer regional fluxes of methane (CH4) and carbon dioxide (CO2) directly from GOSAT retrievals of XCH4:XCO2, using sparse ground-based CH4 and CO2 mole fraction data to anchor the ratio. This work builds on previously reported theory that takes advantage that: (1) these ratios are less prone to systematic error than either the full physics data products or the proxy CH4 data products; and (2) the resulting CH4 and CO2 fluxes are self-consistent. We show that a posteriori fluxes inferred from the GOSAT data generally outperform the fluxes inferred only from in situ data, as expected. GOSAT CH4 and CO2 fluxes are consistent with global growth rates for CO2 and CH4 reported by NOAA, and with a range of independent data including in particular new profile measurements (0–7 km) over the Amazon basin that were collected specifically to help validate GOSAT over this geographical region. We find that large-scale multi-year annual a posteriori CO2 fluxes inferred from GOSAT data are similar to those inferred from the in situ surface data but with smaller uncertainties, particularly over the tropics. GOSAT data are consistent with smaller peak-to-peak seasonal amplitudes of CO2 than either a priori or the in situ inversion, particularly over the tropics and the southern extra-tropics. Over the northern extra-tropics, GOSAT data show larger uptake than the a priori but less than the in situ inversion, resulting in small net emissions over the year. We also find evidence that the carbon balance of tropical South America was perturbed following the droughts of 2010 and 2012 with net annual fluxes not returning to an approximate annual balance until 2013. In contrast, GOSAT data significantly changed the a priori spatial distribution of CH4 emission with a 40 % increase over tropical South America and tropical Asia and smaller decrease over Eurasia and temperate South America. We find no evidence from GOSAT that tropical South American CH4 fluxes were dramatically affected by the two large-scale Amazon droughts. However, we find that GOSAT data are consistent with double seasonal peaks in fluxes that are reproduced over the five years we studied: a small peak in January to April and a larger peak in June to October, which is likely due to superimposed emissions from different geographical regions

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure &lt;= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil

    Get PDF
    The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others
    corecore