19 research outputs found

    Joint Observatories Kavli Science Forum

    Full text link
    The Joint Observatories Kavli Science Forum in Chile was organised in a hybrid mode with the aim of encouraging collaborations, not only with the Chilean institutions but also between the different observing facilities based in Chile. The meeting featured scientific talks showing results obtained with the astronomical facilities based in Chile, but significant time was also dedicated to round-table discussions on Life Balance, Diversity-Equity-Inclusion, and the Road Ahead (i.e., the future of those Chile-based facilities).Comment: 2 pages, 2 figures, Conference Repor

    The orbital period of the recurrent nova V2487 Oph revealed

    Full text link
    We present the first reliable determination of the orbital period of the recurrent nova V2487 Oph (Nova Oph 1998). We derived a value of 0.753±0.0160.753 \pm 0.016 d (18.1±0.418.1 \pm 0.4 h) from the radial velocity curve of the intense He II λ\lambda4686 emission line as detected in time-series X-shooter spectra. The orbital period is significantly shorter than earlier claims, but it makes V2487 Oph one of the longest period cataclysmic variables known. The spectrum of V2487 Oph is prolific in broad Balmer absorptions that resemble a white dwarf spectrum. However, we show that they come from the accretion disc viewed at low inclination. Although highly speculative, the analysis of the radial velocity curves provides a binary mass ratio q0.16q \approx 0.16 and a donor star mass M20.21M_2 \approx 0.21 M_\odot, assuming the reported white dwarf mass M1=1.35M_1 = 1.35 M_\odot. A subgiant M-type star is tentatively suggested as the donor star. We were lucky to inadvertently take some of the spectra when V2487 Oph was in a flare state. During the flare, we detected high-velocity emission in the Balmer and He II λ\lambda4686 lines exceeding 2000-2000 km s1^{-1} at close to orbital phase 0.4. Receding emission up to 12001200 km s1^{-1} at about phase 0.3 is also observed. The similarities with the magnetic cataclysmic variables may point to magnetic accretion on to the white dwarf during the repeating flares.Comment: Accepted for publication in MNRAS (October 9, 2023

    A revised view of the Canis Major stellar overdensity with DECam and Gaia: new evidence of a stellar warp of blue stars

    Full text link
    We present DECam imaging combined with Gaia DR2 data to study the Canis Major overdensity. The presence of the so-called Blue Plume stars in a low-pollution area of the color-magnitude diagram allows us to derive the distance and proper motions of this stellar feature along the line of sight of its hypothetical core. The stellar overdensity extends on a large area of the sky at low Galactic latitudes, below the plane, and between 230<<255^\circ < \ell < 255^\circ. According to the orbit derived for Canis Major, it presents an on-plane rotation around the Milky Way. Moreover, additional overdensities of Blue Plume stars are found around the plane and across the Galaxy, proving that these objects are not only associated with that structure. The spatial distribution of these stars, derived using Gaia astrometric data, confirms that the detection of the Canis Major overdensity results more from the warped structure of the Milky Way disk than from the accretion of a dwarf galaxy.Comment: 11 pages, 9 figures, accepted for publication in MNRA

    Stellar streams around the Magellanic Clouds in 4D

    Get PDF
    We carried out a spectroscopic follow-up program of the four new stellar stream candidates detected by Belokurov & Koposov (2016) in the outskirts of the Large Magellanic Cloud (LMC) using FORS2 (VLT). The medium-resolution spectra were used to measure the line-of-sight velocities, estimate stellar metallicities and to classify stars into Blue Horizontal Branch (BHB) and Blue Straggler (BS) stars. Using the 4-D phase-space information, we attribute approximately one half of our sample to the Magellanic Clouds, while the rest is part of the Galactic foreground. Only two of the four stream candidates are confirmed kinematically. While it is impossible to estimate the exact levels of MW contamination, the phase-space distribution of the entire sample of our Magellanic stars matches the expected velocity gradient for the LMC halo and extends as far as 33 deg (angular separation) or 29 kpc from the LMC center. Our detections reinforce the idea that the halo of the LMC seems to be larger than previously expected, and its debris can be spread in the sky out to very large separations from the LMC center. Finally, we provide some kinematic evidence that many of the stars analysed here have likely come from the Small Magellanic Cloud.Comment: 15 pages, 13 figures, accepted for publication in MNRA

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    The NuSTAR

    Full text link

    IGAPS: The merged IPHAS and UVEX optical surveys of the northern Galactic plane

    No full text
    The INT Galactic Plane Survey (IGAPS) is the merger of the optical photometric surveys, IPHAS and UVEX, based on data from the Isaac Newton Telescope (INT) obtained between 2003 and 2018. Here, we present the IGAPS point source catalogue. It contains 295.4 million rows providing photometry in the filters, i, r, narrow-band Hα, g, and URGO. The IGAPS footprint fills the Galactic coordinate range, |b| 5σ confidence).MM, JED and GB acknowledge the support of research grants funded by the Science, Technology and Facilities Council of the UK (STFC, grants ST/M001008/1 and ST/J001333/1). MM was partially supported by the MINECO (Spanish Ministry of Economy) through grant ESP2016-80079-C2-1-R and RTI2018-095076-B-C21 (MINECO/FEDER, UE), and MDM-2014-0369 of ICCUB (Unidad de Excelencia “María de Maeztu”). RG benefitted from support via STFC grant ST/M001334/1 as a visitor to UCL. PJG acknowledges support from the Netherlands Organisation for Scientific Research (NWO), in contributing to the Isaac Newton Group of Telescopes and through grant 614.000.601. JC acknowldges support by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) under grant AYA2017-83216-P. DJ and PR-G acknowledge support from the State Research Agency (AEI) of the Spanish Ministry of Science, Innovation and Universities (MCIU) and the European Regional Development Fund (FEDER) under grant AYA2017-83383-P. RR acknowledges funding by the German Science foundation (DFG) through grants HE1356/71-1 and IR190/1-1. We thank Eugene Magnier for providing support on Pan-STARRS data. This research has made use of the University of Hertfordshire high-performance computing facility (https://uhhpc.herts.ac.uk/) located at the University of Hertfordshire (supported by STFC grants including ST/P000096/1). We thank Martin Hardcastle for his support and expertise in connection with our use of the facility. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www. cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. Much of the analysis presented has been carried out via TopCat and stilts (Taylor et al. 2006). We thank the referee for comments on this paper that have improved its content

    Whiting 1: Confirmation of its accretion by the Milky Way

    No full text
    We investigate the association of Whiting 1 with the Sagittarius tidal stream by obtaining radial velocities for a sample of 101 stars observed with VIMOS. Our results reveal the presence of a component of the Sagittarius tidal stream with a radial velocity - and distance - compatible with that of the globular cluster. Therefore, we conclude that Whiting1 was formed in the interior of the Sagittarius dwarf spheroidal galaxy and later accreted by the Milky Way. In addition, our data also reveal the detection for the first time of an ancient wrap of the Sagittarius tidal stream along the same line-of-sight and at the same heliocentric distance
    corecore