7,065 research outputs found

    Interference effects in two-photon ATI by multiple orders high harmonics with random or locked phases

    Full text link
    We numerically study 2-photon processes using a set of harmonics from a Ti:Sapphire laser and in particular interference effects in the Above Threshold Ionization spectra. We compare the situation where the harmonic phases are assumed locked to the case where they have a random distribution. Suggestions for possible experiments, using realistic parameters are discussed.Comment: 11 pages, 13 figures, LaTe

    Time-dependent calculation of ionization in Potassium at mid-infrared wavelengths

    Full text link
    We study the dynamics of the Potassium atom in the mid-infrared, high intensity, short laser pulse regime. We ascertain numerical convergence by comparing the results obtained by the direct expansion of the time-dependent Schroedinger equation onto B-Splines, to those obtained by the eigenbasis expansion method. We present ionization curves in the 12-, 13-, and 14-photon ionization range for Potassium. The ionization curve of a scaled system, namely Hydrogen starting from the 2s, is compared to the 12-photon results. In the 13-photon regime, a dynamic resonance is found and analyzed in some detail. The results for all wavelengths and intensities, including Hydrogen, display a clear plateau in the peak-heights of the low energy part of the Above Threshold Ionization (ATI) spectrum, which scales with the ponderomotive energy Up, and extends to 2.8 +- 0.5 Up.Comment: 15 two-column pages with 15 figures, 3 tables. Accepted for publication in Phys. Rev A. Improved figures, language and punctuation, and made minor corrections. We also added a comparison to the ADK theor

    High flux polarized gamma rays production: first measurements with a four-mirror cavity at the ATF

    Get PDF
    The next generation of e+/e- colliders will require a very intense flux of gamma rays to allow high current polarized positrons to be produced. This can be achieved by converting polarized high energy photons in polarized pairs into a target. In that context, an optical system consisting of a laser and a four-mirror passive Fabry-Perot cavity has recently been installed at the Accelerator Test Facility (ATF) at KEK to produce a high flux of polarized gamma rays by inverse Compton scattering. In this contribution, we describe the experimental system and present preliminary results. An ultra-stable four-mirror non planar geometry has been implemented to ensure the polarization of the gamma rays produced. A fiber amplifier is used to inject about 10W in the high finesse cavity with a gain of 1000. A digital feedback system is used to keep the cavity at the length required for the optimal power enhancement. Preliminary measurements show that a flux of about 4×106γ4\times10^6 \gamma/s with an average energy of about 24 MeV was generated. Several upgrades currently in progress are also described

    Gas-to-Dust mass ratios in local galaxies over a 2 dex metallicity range

    Get PDF
    This paper analyses the behaviour of the gas-to-dust mass ratio (G/D) of local Universe galaxies over a large metallicity range. We combine three samples: the Dwarf Galaxy Survey, the KINGFISH survey and a subsample from Galametz et al. (2011) totalling 126 galaxies, covering a 2 dex metallicity range, with 30% of the sample with 12+log(O/H) < 8.0. The dust masses are homogeneously determined with a semi-empirical dust model, including submm constraints. The atomic and molecular gas masses are compiled from the literature. Two XCO are used to estimate molecular gas masses: the Galactic XCO, and a XCO depending on the metallicity (as Z^{-2}). Correlations with morphological types, stellar masses, star formation rates and specific star formation rates are discussed. The trend between G/D and metallicity is empirically modelled using power-laws (slope of -1 and free) and a broken power-law. We compare the evolution of the G/D with predictions from chemical evolution models. We find that out of the five tested galactic parameters, metallicity is the galactic property driving the observed G/D. The G/D versus metallicity relation cannot be represented by a power-law with a slope of -1 over the whole metallicity range. The observed trend is steeper for metallicities lower than ~ 8.0. A large scatter is observed in the G/D for a given metallicity, with a dispersion of 0.37 dex in metallicity bins of ~0.1 dex. The broken power-law reproduces best the observed G/D and provides estimates of the G/D that are accurate to a factor of 1.6. The good agreement of the G/D and its scatter with the three tested chemical evolution models shows that the scatter is intrinsic to galactic properties, reflecting the different star formation histories, dust destruction efficiencies, dust grain size distributions and chemical compositions across the sample. (abriged)Comment: 23 pages, 12 figures, accepted in Astronomy & Astrophysic

    Dynamics of coupled bosonic systems with applications to preheating

    Get PDF
    Coupled, multi-field models of inflation can provide several attractive features unavailable in the case of a single inflaton field. These models have a rich dynamical structure resulting from the interaction of the fields and their associated fluctuations. We present a formalism to study the nonequilibrium dynamics of coupled scalar fields. This formalism solves the problem of renormalizing interacting models in a transparent way using dimensional regularization. The evolution is generated by a renormalized effective Lagrangian which incorporates the dynamics of the mean fields and their associated fluctuations at one-loop order. We apply our method to two problems of physical interest: (i) a simple two-field model which exemplifies applications to reheating in inflation, and (ii) a supersymmetric hybrid inflation model. This second case is interesting because inflation terminates via a smooth phase transition which gives rise to a spinodal instability in one of the fields. We study the evolution of the zero mode of the fields and the energy density transfer to the fluctuations from the mean fields. We conclude that back reaction effects can be significant over a wide parameter range. In particular for the supersymmetric hybrid model we find that particle production can be suppressed due to these effects.Comment: 23 pages, 16 eps-figures, minor changes in the text, references added, accepted for publication in PR

    Ferrimagnetism in sputtered MnxCoGe thin films

    Full text link
    Investigations into the magnetic properties of sputtered MnxCoGe films in the range 0.8 <= x <= 2.5 uncovered ferrimagnetic order, unlike the ferromagnetic order reported in bulk samples. These films formed hexagonal Ni2In-type structures in all measured compositions. While the Curie temperatures of the films are comparable to those of hexagonal bulk MnCoGe, here is a reduction in the magnetization of the MnxCoGe film relative to bulk MnCoGe, and a magnetization compensation point is observed in the x < 1 samples. To understand the behavior, we calculated the magnetic moments of Mn-antisite defects in MnCoGe with density-function theory calculations. Models constructed from the calculation suggest that films become ferrimagnetic due to the presence of Mn on the Co and Ge sites. In the x < 1 samples, these defects arose from the disorder in the films, whereas for x > 1, the excess Mn was driven onto the antisites and produced ferrimagnetic order.Comment: 8 pages, 7 figure

    Insights into gas heating and cooling in the disc of NGC 891 from Herschel far-infrared spectroscopy

    Get PDF
    We present Herschel PACS and SPIRE spectroscopy of the most important far-infrared cooling lines in the nearby edge-on spiral galaxy, NGC 891: [CII] 158 μ\mum, [NII] 122, 205 μ\mum, [OI] 63, 145 μ\mum, and [OIII] 88 μ\mum. We find that the photoelectric heating efficiency of the gas, traced via the ([CII]+[OII]63)/FTIRF_{\mathrm{TIR}} ratio, varies from a mean of 3.5×\times103^{-3} in the centre up to 8×\times103^{-3} at increasing radial and vertical distances in the disc. A decrease in ([CII]+[OII]63)/FTIRF_{\mathrm{TIR}} but constant ([CII]+[OI]63)/FPAHF_{\mathrm{PAH}} with increasing FIR colour suggests that polycyclic aromatic hydrocarbons (PAHs) may become important for gas heating in the central regions. We compare the observed flux of the FIR cooling lines and total IR emission with the predicted flux from a PDR model to determine the gas density, surface temperature and the strength of the incident far-ultraviolet (FUV) radiation field, G0G_{0}. Resolving details on physical scales of ~0.6 kpc, a pixel-by-pixel analysis reveals that the majority of the PDRs in NGC 891's disc have hydrogen densities of 1 < log (nn/cm3^{-3}) < 3.5 experiencing an incident FUV radiation field with strengths of 1.7 < log G0G_0 < 3. Although these values we derive for most of the disc are consistent with the gas properties found in PDRs in the spiral arms and inter-arm regions of M51, observed radial trends in nn and G0G_0 are shown to be sensitive to varying optical thickness in the lines, demonstrating the importance of accurately accounting for optical depth effects when interpreting observations of high inclination systems. With an empirical relationship between the MIPS 24 μ\mum and [NII] 205 μ\mum emission, we estimate an enhancement of the FUV radiation field strength in the far north-eastern side of the disc.Comment: Accepted for publication in A&A. 25 pages, including 17 figures and 3 tables, abstract abridged for arXi

    A Cone Jet-Finding Algorithm for Heavy-Ion Collisions at LHC Energies

    Get PDF
    Standard jet finding techniques used in elementary particle collisions have not been successful in the high track density of heavy-ion collisions. This paper describes a modified cone-type jet finding algorithm developed for the complex environment of heavy-ion collisions. The primary modification to the algorithm is the evaluation and subtraction of the large background energy, arising from uncorrelated soft hadrons, in each collision. A detailed analysis of the background energy and its event-by-event fluctuations has been performed on simulated data, and a method developed to estimate the background energy inside the jet cone from the measured energy outside the cone on an event-by-event basis. The algorithm has been tested using Monte-Carlo simulations of Pb+Pb collisions at s=5.5\sqrt{s}=5.5 TeV for the ALICE detector at the LHC. The algorithm can reconstruct jets with a transverse energy of 50 GeV and above with an energy resolution of 30\sim30%.Comment: 13 pages, 7 figure

    NKG2D regulation of lung pathology and dendritic cell function following respiratory syncytial virus infection

    Get PDF
    © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. Background. Respiratory syncytial virus (RSV) is a common cause of respiratory tract infection in vulnerable populations. Natural killer (NK) cells and dendritic cells (DC) are important for the effector functions of both cell types following infection. Methods. Wild-type and NKG2D-deficient mice were infected with RSV. Lung pathology was assessed by histology. Dendritic cell function and phenotype were evaluated by enzyme-linked immunosorbent assay and flow cytometry. The expression of NKG2D ligands on lung and lymph node DCs was measured by immunostaining and flow cytometry. Adoptive transfer experiments were performed to assess the importance of NKG2D-dependent DC function in RSV infection. Results. NKG2D-deficient mice exhibited greater lung pathology, marked by the accumulation of DCs following RSV infection. Dendritic cells isolated from NKG2D-deficient mice had impaired responses toward Toll-like receptor ligands. Dendritic cells expressed NKG2D ligands on their surface, which was further increased in NKG2D-deficient mice and during RSV infection. Adoptive transfer of DCs isolated from wild-type mice into the airways of NKG2D-deficient mice ameliorated the enhanced inflammation in NKG2D-deficient mice after RSV infection. Conclusion. NKG2D-dependent interactions with DCs control the phenotype and function of DCs and play a critical role in pulmonary host defenses against RSV infection

    Quantum Dynamics of the Slow Rollover Transition in the Linear Delta Expansion

    Full text link
    We apply the linear delta expansion to the quantum mechanical version of the slow rollover transition which is an important feature of inflationary models of the early universe. The method, which goes beyond the Gaussian approximation, gives results which stay close to the exact solution for longer than previous methods. It provides a promising basis for extension to a full field theoretic treatment.Comment: 12 pages, including 4 figure
    corecore