771 research outputs found
Guided bone regeneration using titanium mesh to augment 3-dimensional alveolar defects prior to implant placement. AÂ pilot study
Objectives: To evaluate the outcomes of bone regeneration using a customized titanium mesh scaffold to cover a bone graft for reconstruction of complex defects of the jaws. Materials and Methods: 19 large defects were digitally reconstructed using CT scans according to the prosthetic requirements. A titanium mesh scaffold was designed to cover the bone (autologous/bovine bone particulate) graft. At least 6 months after surgery, a new cone-beam CT was taken. The pre- and postoperative CT datasets were then converted into three-dimensional models and digitally aligned. The actual mesh position was compared to the virtual position to assess the reliability of the digital project. The reconstructed bone volumes (RBVs) were calculated according to the planned bone volumes (PBVs), outlining the areas under the mesh. These values were then correlated with the number of exposures, locations of atrophy, and virtually planned bone volume. Results: The mean matching value between the planned position of the mesh and the actual one was 82 ± 13.4%. 52.3% (40% early and 60% late) exposures were observed, with 15.8% exhibiting infection. 26.3% resulted as failures. The amount of reconstructed bone volume (RBV) in respect to PBV was 65 ± 40.5%, including failures, and 88.2 ± 8.32% without considering the failures. The results of the exposure event were statistically significant (p =.006) in conditioning the bone volume regenerated. Conclusions: This study obtained up to 88% of bone regeneration in 74% of the cases. The failures encountered (26%) should underline the operator's expertise relevance in conditioning the final result
Vertical ridge augmentation with Ti-reinforced dense polytetrafluoroethylene (d-PTFE) membranes or Ti-meshes and collagen membranes: 3-year results of a randomized clinical trial
BackgroundThe present study aimed to evaluate hard and soft tissue parameters around implants placed in augmented posterior mandible, comparing Ti-reinforced d-PTFE membranes with Ti-meshes covered with collagen membranes, after 3 years of follow-up. Materials and MethodsForty eligible patients were randomly assigned to group A (Ti-reinforced d-PTFE membrane) or group B (mesh covered with collagen membrane) for vertical ridge augmentation (VRA) and simultaneous implants. Implants were evaluated using specific peri-implant parameters for bone and soft tissues: probing pocket depth (PPD), modified plaque index (mPI), bleeding on probing (BoP), modified gingival index (mGI), thickness of keratinized tissue (tKT), width of keratinized tissue (wKT), fornix depth (FD), peri-implant bone level (PBL), interproximal bone peaks (IBP), marginal bone loss (MBL), interproximal bone loss (IBL). ResultsA total of 28 patients with 79 implants were evaluated after 3 years of follow-up. The mean value of MBL was 0.70 mm (group A = 0.73 mm; group B = 0.71 mm), while mean IBL was 0.54 mm (group A = 0.64 mm; group B = 0.40 mm). The treatment with meshes resulted not inferior to PTFE and their clinical results appeared similar. A strong correlation between PBL and IBP was confirmed. Both study groups showed an increase of tKT and wKT values. ConclusionIn the posterior mandible, VRA using both techniques provides stable PBLs up to 3 years. A correct soft tissue management and a strict professional oral hygiene protocol play a crucial role on peri-implant health over time
Unveiling the biodiversity of deep-sea nematodes through metabarcoding: Are we ready to bypass the classical taxonomy?
Nematodes inhabiting benthic deep-sea ecosystems account for >90% of the total metazoan abundances and they have been hypothesised to be hyper-diverse, but their biodiversity is still largely unknown. Metabarcoding could facilitate the census of biodiversity, especially for those tiny metazoans for which morphological identification is difficult. We compared, for the first time, different DNA extraction procedures based on the use of two commercial kits and a previously published laboratory protocol and tested their suitability for sequencing analyses of 18S rDNA of marine nematodes. We also investigated the reliability of Roche 454 sequencing analyses for assessing the biodiversity of deep-sea nematode assemblages previously morphologically identified. Finally, intra-genomic variation in 18S rRNA gene repeats was investigated by Illumina MiSeq in different deep-sea nematode morphospecies to assess the influence of polymorphisms on nematode biodiversity estimates. Our results indicate that the two commercial kits should be preferred for the molecular analysis of biodiversity of deep-sea nematodes since they consistently provide amplifiable DNA suitable for sequencing. We report that the morphological identification of deep-sea nematodes matches the results obtained by metabarcoding analysis only at the order-family level and that a large portion of Operational Clustered Taxonomic Units (OCTUs) was not assigned. We also show that independently from the cut-off criteria and bioinformatic pipelines used, the number of OCTUs largely exceeds the number of individuals and that 18S rRNA gene of different morpho-species of nematodes displayed intragenomic polymorphisms. Our results indicate that metabarcoding is an important tool to explore the diversity of deep-sea nematodes, but still fails in identifying most of the species due to limited number of sequences deposited in the public databases, and in providing quantitative data on the species encountered. These aspects should be carefully taken into account before using metabarcoding in quantitative ecological research and monitoring programmes of marine biodiversity
Dixon-Souriau equations from a 5-dimensional spinning particle in a Kaluza-Klein framework
The dimensional reduction of Papapetrou equations is performed in a
5-dimensional Kaluza-Klein background and Dixon-Souriau results for the motion
of a charged spinning body are obtained. The splitting provides an electric
dipole moment, and, for elementary particles, the induced parity and
time-reversal violations are explained.Comment: 20 pages, to appear on Physics Letters
Testosterone insulin-like effects: an in vitro study on the short-term metabolic effects of testosterone in human skeletal muscle cells
Testosterone by promoting different metabolic pathways contributes to short-term homeostasis of skeletal muscle, the largest insulin-sensitive tissue and the primary site for insulin-stimulated glucose utilization. Despite evidences indicate a close relationship between testosterone and glucose metabolism, the molecular mechanisms responsible for a possible testosterone-mediated insulin-like effects on skeletal muscle are still unknown
The role of inflammation in patients with intraductal mucinous neoplasm of the pancreas and in those with pancreatic adenocarcinoma
Background: There are very few data regarding inflammation in patients with intraductal papillary mucinous neoplasms (IPMNs) of the pancreas. Aim: To evaluate the circulating concentrations of placental growth factor (PlGF), transforming growth factor-alpha (TGF-\u3b1), transforming growth factor-beta 1 (TGF-\u3b21), tumour necrosis factor receptor 1 (TNF-R1) and matrix metalloproteinase-2 (MMP-2) in patients with IPMNs and in those with pancreatic adenocarcinomas. Patients and Methods: Sixty-nine patients were enrolled: 23 (33.3%) had IPMNs and 46 (66.7%) had histologically confirmed pancreatic adenocarcinomas. Thirteen healthy subjects were also studied. PlGF, TGF-\u3b1, TGF-\u3b21, TNF-R1 and MMP-2 were determined using commercially available kits. Results: TNF-R1 (p=0.003) was the only protein significantly different among the three groups. Conclusion: Serum TNF-R1 was elevated in patients with IPMNs and in those with pancreatic adenocarcinomas, suggesting a high apoptotic activity in both groups of patients studied
Multipole moments in Kaluza-Klein theories
This paper contains discussion of the problem of motion of extended i.e. non
point test bodies in multidimensional space. Extended bodies are described in
terms of so called multipole moments. Using approximated form of equations of
motion for extended bodies deviation from geodesic motion is derived. Results
are applied to special form of space-time.Comment: 11 pages, AMS-TeX, few misprints corrected, to appear in Classical
and Quantum Gravit
- âŠ