22 research outputs found

    Gender-specific expression of ubiquitin-specific peptidase 9 modulates tau expression and phosphorylation: possible implications for tauopathies

    Get PDF
    Public transcriptomics studies have shown that several genes display pronounced gender differences in their expression in the human brain, which may influence the manifestations and risk for neuronal disorders. Here we apply a transcriptome-wide analysis to discover genes with gender-specific expression and significant alterations in public post mortem brain tissue from Alzheimer’s disease (AD) patients compared to controls. We identify the sex-linked ubiquitin specific peptidase 9 (USP9) as an outstanding candidate gene with highly significant expression differences between the genders and male-specific under-expression in AD. Since previous studies have shown that USP9 can modulate the phosphorylation of the AD-associated protein MAPT, we investigate functional associations between USP9 and MAPT in further detail. After observing a high positive correlation between the expression of USP9 and MAPT in the public transcriptomics data, we show that USP9 knockdown results in significantly decreased MAPT expression in a DU145 cell culture model and a concentration-dependent decrease for the MAPT orthologs mapta and maptb in a zebrafish model. From the analysis of microarray and qRT-PCR experiments for the knockdown in DU145 cells and prior knowledge from the literature, we derive a data-congruent model for a USP9-dependent regulatory mechanism modulating MAPT expression via BACH1 and SMAD4. Overall, the analyses suggest USP9 may contribute to molecular gender differences observed in tauopathies and provide a new target for intervention strategies to modulate MAPT expression

    Anti-seizure activity of African medicinal plants: The identification of bioactive alkaloids from the stem bark of Rauvolfia caffra using an in vivo zebrafish model

    Get PDF
    Epilepsy is one of the major chronic diseases that does not have a cure to date. Adverse drug reactions have been reported from the use of available anti-epileptic drugs (AEDs) which are also effective in only two-thirds of the patients. Accordingly, the identification of scaffolds with promising anti-seizure activity remains an important first step towards the development of new anti-epileptic therapies, with improved efficacy and reduced adverse effects. Herbal medicines are widely used in developing countries, including in the treatment of epilepsy but with little scientific evidence to validate this use. In the search for new epilepsy treatment options, the zebrafish has emerged as a chemoconvulsant-based model for epilepsy, mainly because of the many advantages that zebrafish larvae offer making them highly suitable for high-throughput drug screening

    Evaluation of the wound healing properties of South African medicinal plants using zebrafish and in vitro bioassays

    Get PDF
    Ethnopharmacological relevance In South Africa, medicinal plants have a history of traditional use, with many species used for treating wounds. The scientific basis of such uses remains largely unexplored. Aim of the study To screen South African plants used ethnomedicinally for wound healing based on their pro-angiogenic and wound healing activity, using transgenic zebrafish larvae and cell culture assays

    Deep learning image recognition enables efficient genome editing in zebrafish by automated injections

    Get PDF
    <div><p>One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish eggs at unprecedented speed. The software is based on the open-source deep-learning library Inception v3. In a first step, the software distinguishes wells containing embryos at one-cell stage from wells to be skipped with an accuracy of 93%. A second step was developed to pinpoint the injection site. Deep learning allows to predict this location on average within 42 μm to manually annotated sites. Using a Graphics Processing Unit (GPU), both steps together take less than 100 milliseconds. We first tested our system by injecting a morpholino into the middle of the yolk and found that the automated injection efficiency is as efficient as manual injection (~ 80%). Next, we tested both CRISPR/Cas9 and DNA construct injections into the zygote and obtained a comparable efficiency to that of an experienced experimentalist. Combined with a higher throughput, this results in a higher yield. Hence, the automated injection of CRISPR/Cas9 will allow high-throughput applications to knock out and knock in relevant genes to study their mechanisms or pathways of interest in diverse areas of biomedical research.</p></div

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Phenotypic assays in yeast and zebrafish reveal drugs that rescue ATP13A2 deficiency

    Get PDF
    Mutations in ATP13A2 (PARK9) are causally linked to the rare neurodegenerative disorders Kufor-Rakeb syndrome, hereditary spastic paraplegia and neuronal ceroid lipofuscinosis. This suggests that ATP13A2, a lysosomal cation-transporting ATPase, plays a crucial role in neuronal cells. The heterogeneity of the clinical spectrum of ATP13A2-associated disorders is not yet well understood and currently these diseases remain without effective treatment. Interestingly, ATP13A2 is widely conserved among eukaryotes, and the yeast model for ATP13A2 deficiency was the first to indicate a role in heavy metal homeostasis, which was later confirmed in human cells. Here we show that deletion of YPK9 (the yeast ortholog of ATP13A2) in Saccharomyces cerevisiae leads to growth impairment in the presence of Zn2+, Mn2+, Co2+ and Ni2+, with the strongest phenotype being observed in the presence of zinc. Using the ypk9 mutant, we developed a high-throughput growth rescue screen based on the Zn2+ sensitivity phenotype. Screening of two drug libraries identified 11 compounds that rescued growth. Subsequently, we generated a zebrafish model for ATP13A2 deficiency and found that both partial and complete loss of atp13a2 function led to increased sensitivity to Mn2+. Based on this phenotype, we validated two of the FDA-approved drugs found in the yeast screen to also exert a rescue effect in zebrafish – N-acetylcysteine, a potent antioxidant, and furaltadone, a nitrofuran antibiotic. This study further supports that combining the high-throughput screening capacity of yeast with rapid in vivo drug testing in zebrafish can represent an efficient drug repurposing strategy in the context of rare inherited disorders involving conserved genes. This work also deepens the understanding of the role of ATP13A2 in heavy metal detoxification and provides a new in vivo model for investigating ATP13A2 deficiency

    Seizure-induced increase in microglial cell population in the developing zebrafish brain.

    No full text
    peer reviewedEpilepsy is a chronic brain disorder characterized by unprovoked and recurrent seizures, of which 60% are of unknown etiology. Recent studies implicate microglia in the pathophysiology of epilepsy. However, their role in this process, in particular following early-life seizures, remains poorly understood due in part to the lack of suitable experimental models allowing the in vivo imaging of microglial activity. Given the advantage of zebrafish larvae for minimally-invasive imaging approaches, we sought for the first time to describe the microglial responses after acute seizures in two different zebrafish larval models: a chemically-induced epileptic model by the systemic injection of kainate at 3 days post-fertilization, and the didys552 genetic epilepsy model, which carries a mutation in scn1lab that leads to spontaneous epileptiform discharges. Kainate-treated larvae exhibited transient brain damage as shown by increased numbers of apoptotic nuclei as early as one day post-injection, which was followed by an increase in the number of microglia in the brain. A similar microglial phenotype was also observed in didys552-/- mutants, suggesting that microglia numbers change in response to seizure-like activity in the brain. Interestingly, kainate-treated larvae also displayed a decreased seizure threshold towards subsequent pentylenetetrazole-induced seizures, as shown by higher locomotor and encephalographic activity in comparison with vehicle-injected larvae. These results are comparable to kainate-induced rodent seizure models and suggest the suitability of these zebrafish seizure models for future studies, in particular to elucidate the links between epileptogenesis and microglial dynamic changes after seizure induction in the developing brain, and to understand how these modulate seizure susceptibility
    corecore